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Abstract

The viewpoint taken in this paper is that data assimilation is funda-
mentally a statistical problem and that this problem should be cast in a
Bayesian framework. In the absence of model error, the correct solution
to the data assimilation problem is to find the posterior distribution im-
plied by this Bayesian setting. Methods for dealing with data assimilation
should then be judged by their ability to probe this distribution. In this
paper we propose a range of techniques for probing the posterior distri-
bution, based around the Langevin equation; and we compare these new
techniques with existing methods.

When the underlying dynamics is deterministic, the posterior distri-
bution is on the space of initial conditions leading to a sampling problem
over this space. When the underlying dynamics is stochastic the poste-
rior distribution is on the space of continuous time paths. By writing
down a density, and conditioning on observations, it is possible to define
a range of Markov Chain Monte Carlo (MCMC) methods which sample
from the desired posterior distribution, and thereby solve the data assim-
ilation problem. The basic building-blocks for the MCMC methods that
we concentrate on in this paper are Langevin equations which are ergodic
and whose invariant measures give the desired distribution; in the case
of path space sampling these are stochastic partial differential equations
(SPDEs).

Two examples are given to show how data assimilation can be formu-
lated in a Bayesian fashion. The first is weather prediction, and the second
is Lagrangian data assimilation for oceanic velocity fields. Furthermore
the relationship between the Bayesian approach outlined here and the
commonly used Kalman filter-based techniques, prevalent in practice, is
discussed. Two simple pedagogical examples are studied to illustrate the
application of Bayesian sampling to data assimilation concretely. Finally
a range of open mathematical and computational issues, arising from the
Bayesian approach, are outlined.

1 Introduction

In this paper we describe a Bayesian approach to data assimilation. The ap-
proach is based on sampling from the posterior distribution on the model, after
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data is assimilated. We believe that this viewpoint may be useful for two pri-
mary reasons: firstly the Bayesian approach gives, in some sense, the correct
theoretical answer to the data assimilation problem and other approaches which
have been adopted, such as ensemble Kalman filtering, should be evaluated by
their ability to approximate the posterior distribution in the Bayesian approach
[26]; secondly, for any data assimilation problems which are bimodal or multi-
modal, Kalman-based methods will necessarily fail (see [21, 35]) and it will be
necessary to use a Bayesian approach, such as the one described here.

From a mathematical viewpoint the main interest in this paper stems from
the fact that we formulate Bayesian data assimilation in the case where the
underlying model dynamics is stochastic. The basic object to sample is then
a continuous time path (time-dependent solution of a differential equation). In
this context the key concept which needs elucidation is that of a probability
density in the space of paths. Once this density is defined, and a conditional
density is written down which incorporates observations, the complete Bayesian
framework can be employed to sample in the space of continuous time paths.

The paper is organized as follows. In section 2 we formulate a number of
variants of the data assimilation problem abstractly in the language of stochastic
differential equations (SDEs). We give two concrete examples, arising in oceanic
and atmospheric science, to motivate the abstract setting. Section 3 introduces
the Bayesian approach to data assimilation in the context of deterministic dy-
namics, where the posterior distribution that we wish to sample is on the initial
data; we introduce the Langevin equation to probe this distribution, and discuss
related MCMC methods. Section 4 carries out a similar program in the case
where the underlying dynamics is stochastic and the posterior distribution is on
the space of paths; we introduces the central idea of probability density in path
space. In subsection 4.2 we describe a generalization of the Langevin equation
to path space, leading to nonlinear parabolic stochastic PDEs (SPDEs) which,
when statistically stationary, sample from the distribution which solves the data
assimilation problem; we also look at a second order Langevin equation, lead-
ing to a nonlinear damped stochastic wave equation. Subsection 4.3 describes
another sampling strategy that might be used to sample path space, namely
a Hybrid Monte Carlo technique. In section 5 we discuss MCMC methods in
path space in general terms, discusing how Metropolis-Hastings ideas might be
used to improve the Langevin and Hybrid methods from the previous section,
and more generally to explore a wide range of sampling techniques. In section
6 we relate the Bayesian approach adopted here to other commonly used meth-
ods of data assimilation. Section 7 contains a pedagogical example in the case
where the underlying model is deterministic; comparisons are made between the
Langevin approach and various Kalman based filters. Section 8 contains a ped-
agogical example of Lagrangian data assimilation, based on a Gaussian random
field model of a velocity field, included to illustrate the Bayesian methodology in
the context of path sampling. Section 9 concludes with a description of a num-
ber of open mathematical and computational questions arising from adopting
our Bayesian viewpoint on data assimilation.

The SPDE based approach to sampling continuous time paths was intro-
duced in [38] and is subsequently analyzed in [15] and [16], building on analysis
in [40]. (For paths conditioned only on knowing the value of the path at two
points in time – bridges – the SPDE based approach was simultaneously written
down in [31].) The SPDE approach generalizes the Langevin equation to sam-
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pling in infinite dimensions. The Langevin approach to sampling in finite dimen-
sions is outlined in the book [32] where it is shown how to use a discretization
of the Langevin equation, in conjunction with a Metropolis-Hastings accept-
reject criterion, to create a Markov chain Monte Carlo (MCMC) method. The
infinite dimensional version of this MCMC method, arising when sampling the
space of paths, is studied in [4]. Hybrid Monte Carlo methods, which are widely
used in molecular dynamics, were generalized to sample in path space in [1],
as were Langevin based methods; however that paper proceeded by discretizing
the evolution equations to be sampled and then applying a finite dimensional
sampling method. It is our view that it is conceptually and algorithmically
preferable to formulate the sampling problem in infinite dimensions (the space
of paths). It is conceptually important to know that the infnite dimensional
problem makes sense mathematically. Once this infinite dimensional problem
is defined, it is algorithmically important to find an efficient way of approx-
imating it by discretization. Discretizing first, so that the sampling problem
is never written down in continuous time, and then sampling, may lead to a
non-optimal approximation of the desired infinite dimensional problem; see the
end of section 4.

The subject of Brownian motion and stochastic calculus is described in [19],
whilst texts on SDEs include [11] and [29]. The subject of SPDEs is covered in
the text [8].

2 The Framework

In this section we write down a precise mathematical framework into which a
variety of data assimilation problems can be cast. We show how Lagrangian
data assimilation can be expressed as a special case of the general framework
and we also discuss the issue of model error. We then give two motivational ex-
amples, and express them precisely in the language of the chosen mathematical
framework. We conclude with some technical assumptions and notation that
will be used in the remainder of the paper.

2.1 Mathematical Setting

Data assimilation may be viewed as a form of signal processing. The signal that
we wish to determine, and into which we wish to assimilate observational data,
is assumed to satisfy the SDE

dx

dt
= f(x) + γ

dWx

dt
, (2.1)

where f determines the systematic part of the evolution, and dWx/dt is Gaussian
white noise perturbing it. In the following we will distinguish between γ = 0
(ODE) and γ 6= 0 (SDE). In the former case the Bayesian framework requires
sampling in the space of initial conditions x(0) only; in the latter it requires
sampling in the (infinite dimensional) space of paths {x(t)}. The model equation
(2.1) may be viewed as a prior distribution on the space of paths. We assume
that x(0) has prior distribution with density ζ.

In Bayesian data assimilation the ultimate objective is to probe the posterior
probability distribution on x(0) (when γ = 0) or on {x(t)} (when γ 6= 0),
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conditional on some form of observation. If the observation is in continuous
time then we denote it by y(t) and assume that it too satisfies an SDE. This
has the form

dy

dt
= g(x, y) + σ

dWy

dt
, (2.2)

where g determines the systematic evolution of the observation, which depends
on the signal x, and dWy/dt is a standard Gaussian white noise perturbing it,
independent of the white noise dWx/dt.

If the observation is in discrete time then we assume that we observe y =
(y1, . . . , yK) satisfying

yk = hk(x(tk)) + σkξk, k = 1, . . . ,K. (2.3)

Here hk determines which function of the signal x is observed, the ξk are stan-
dard i.i.d. unit Gaussian random variables N (0, I) and the σk determine their
covariances; both the hk and σk are indexed by k because the nature of the ob-
servations may differ at different times. We assume that the ξk are independent
of the white noise driving (2.1), and of x(0). The times {tk} are ordered and
assumed to satisfy

0 < t1 < t2 < · · · < tK ≤ T.

Any observation at t = 0 is incorporated into ζ.

2.2 Lagrangian Data Assimilation

Lagrangian data assimilation arises frequently in the oceanic sciences where
observations about a fluid velocity field are frequently given in terms of particles
advected by the field: Lagrangian information. This may be formulated as a
special case of the preceding framework, as we now show; this approach to
Lagrangian data assimilation, showing that it is a special case of the general
set-up, first appears in the literature in [17, 21]. There are subtle differences
between the cases where the observations are in continuous and discrete time
and whether γ = 0 or not.

We start with discrete time observations and consider the situation where
γ = 0. Assume that the Lagrangian information about x is carried in z, where

dz

dt
= g(x, z).

The observations are

yk = hk(z(tk)) + σkξk, k = 1, . . . ,K.

By re-defining x 7→ (x, z), f 7→ (f, g) and the hk we can formulate this as in
the previous subsection for discrete time observations and γ = 0. An important
point to notice is that part of the data assimilation process may involve sampling
the initial data for the Lagrangian variables as well as for x. Hence the reason
why the vector x is extended to incorporate z as well as x.

We now consider the case γ 6= 0 and again study discrete time observations.
Assume that the Lagrangian information about x is carried in z, where

dz

dt
= g(x, z) + η

dWz

dt
.
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The observations are

yk = h(z(tk)) + σkξk, k = 1, . . . ,K.

Again, by re-defining x 7→ (x, z), f → (f, g), Wx 7→ (Wx,Wz), γ 7→ (γ, η) and
the hk we can formulate this as in the previous subsection, now for discrete
time observations and γ 6= 0. Since the Lagrangian data is in discrete time, but
the Lagrangian variables evolve stochastically in continuous time, part of the
data assimilation process involves sampling paths of the Lagrangian variables
between the observations. This is the reason why the vector x is extended to
incorporate z as well as x.

In the case where the Lagrangian information is carried in y, and y is a
continuous time path satisfying equation (2.2), the observation is in continuous
time. Hence this may be directly formulated as in the case of continuous time
observations in the previous subsection, for both γ = 0 and γ 6= 0.

2.3 Model Error

If the model error can be represented as Gaussian white noise in time then it
is already clearly representible in the mathematical framework given by (2.1).
However, typically, the precise nature of the model error would not be known;
more precisely γ would be unknown. In this context the methods described in
this paper would need to be extended to include sampling from the distribution
on γ, given some prior information on it. This falls into the realm of parameter
estimation, and is a natural extension of the Bayesian framework given here.

Of course model error may not be Gaussian white in time: it may include
systematic non-random contributions, as well as noise which is time-correlated.
However, the framework given can be extended to cover such situations, and
would require the estimation of parameters representing the form of the sys-
tematic model error, as well as the memory kernel for the noise; the latter will
be most easily estimated if it is assumed to be exponentially decaying, since the
model can then still be expressed in Markovian form.

2.4 Motivational Examples

When discretized in space, a typical model for numerical weather prediction is
an ODE system with dimension of order 108. In the absence of model error and
external forcing, an equation of the form (2.1) is obtained, with γ = 0. In this
context the state x represents the nodal values of the unknown quantities such
as velocity, temperature, pressure and so forth. The observations which we wish
to assimilate are then various projections of the state x, possibly different at
different times, and may be viewed as subject to independent Gaussian white
noises. We thus obtain observations y of the form (2.3).

A second motivational example is that of Lagrangian data assimilation in
the ocean (see [21] for work in this direction). For expository purposes consider
trying to make inference about a 2D velocity field governed by the noisy incom-
pressible Navier-Stokes equations, by means of Lagrangian particle trajectories.
If we assume periodicity in space then we may write the velocity field v(y, t) as
an (incompressible) trigonometric series

v(y, t) =
∑
k∈K

ik⊥xk(t) exp
(
ik · y

)
.
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The vector x made up of the xk then satisfies an equation like (2.1). Now
imagine a set of Lagrangian drifters, indexed by `, and with positions y`(t)
governed by

dy`

dt
= v(y`, t) + σ`

dW`

dt
.

From the representation of the velocity field it is clear that

v(y, t) = χ(x(t), y)

for some function χ linear in x and hence that the collection of Lagrangian
drifters satisfy an equation of the form (2.2), with g(x, y) found by concatenating
the χ(x, y`) over each drifter y`. If data from the drifters (obtained by GPS for
example) is assumed to be essentially continuous in time then we may view (2.2)
as giving the observational data y which is to be assimilated. (As mentioned
above it is also possible to formulate Lagrangian data assimilation in the case
where the drifters are observed only at discrete times.)

2.5 Assumptions and Notation

In equation (2.1) we have f : Rd → Rd, γ ∈ Rd×d and Wx is standard d−dimensional
Brownian motion. We assume either that γ = 0, or that γ is invertible and we
define Γ = γγT . In equation (2.2) we have g : Rd × Rm → Rm, σ ∈ Rm×m

and Wy is standard m−dimensional Brownian motion, independent of Wx. We
assume that σ is invertible and we define Σ = σσT . In equation (2.3) we have
hk : Rd → Rm and σk ∈ Rm×m. The ξk are assumed independent of Wx. We
also assume that σk is invertible and define Σk = σkσT

k .
For any positive-definite n × n covariance matrix A we define the inner

product on Rn given by
〈a, b〉A = aT A−1b

and the induced norm ‖ · ‖2A = 〈·, ·〉A. This notation is used extensively in the
following sections, with A equal to Γ, Σ or Σj , and also with A = R where R
is a covariance matrix formed by concatenating the discrete time observations
into a single vector.

3 Initial Data Sampling and SDEs

We start by considering the case where γ = 0 so that the posterior distribution
to be sampled is on the initial data, and is finite dimensional.

3.1 Density on Initial Conditions

The dynamics are governed by

dx

dt
= f(x), x(0) = x0 ∼ ζ

and we use the solution operator for the dynamics to write

x(t) = Φ(x0; t). (3.1)
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We observe h(x(t)) at discrete times, subject to independent noises, and write
(2.3) as

yk = h(x(tk)) + ηk, ηk ∼ N (0,Σk).

If we define

yT = {yT
k )}K

k=1, ηT = {ηT
k }K

k=1, H(x0)T = {h(Φ(x0; tk))T }K
k=1

and let R be the covariance matrix of the Gaussian random variable η, then

y = H(x0) + η, η ∼ N (0, R).

From this we find the pdf for the joint random variable (x0, y) by first condi-
tioning on x0 and then multiplying by the prior on x0. Define

J(x0, y) =
1
2
‖y −H(x0)‖2R.

Then the pdf for (x0, y) is

ρ(x0, y) ∝ ζ(x0) exp
(
−J(x0, y)

)
. (3.2)

By Bayes rule
ρ(x0|y) ∝ ρ(x0, y)

with constant of proportionality depending only on y. Hence we may use the
expression (3.2) as the basis for sampling x0 given y, in any method which
requires the pdf only up to a multiplicative constant. We discuss such methods
in the next two subsections.

It is worth noting at this point that the commonly adopted 4DVAR ap-
proach ([24]) corresponds to choosing x0 to maximize ρ(x0|y). It may hence be
viewed as a maximum likelihood method for determination of x0. If the random
variable x0|y is Gaussian and has small variance then this is natural. But if
the random variable is far from Gaussian with small variance, for example if it
is bimodal, 4DVAR clearly comprises an ineffective way to probe the posterior
distribution on x0 given observations y. It is thus of interest to understand the
structure of the posterior distribution in order to know whether 4DVAR is a
useful approach. The structure of the posterior distribution depends in a com-
plicated way on the underlying dynamics of x, as well as the nature and number
of the observations.

3.2 Langevin SDE

Sampling from the distribution of x0|y can be achieved by, amongst many pos-
sibilities, solving the Langevin equation. This is simply

dx0

ds
= ∇x0 ln ρ(x0|y) +

√
2
dW

ds
. (3.3)

This equation has ρ(x0|y) as an invariant density and is ergodic under mild
assumptions on ρ. 1 Hence the empiricial measure (histogram) generated by

1For the equation to be well-defined the conditional density needs to be differentiable in
x0; if it is not then more care is required in defining the Langevin equation.
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a single solution path over a long time interval will approximate the desired
posterior density. More precisely, under the assumption of ergodicity, we will
have

lim
S→∞

1
S

∫ S

0

ϕ(x0(s))ds →
∫

Rd

ϕ(x)ρ(x|y)dx, (3.4)

for functions ϕ of the initial distribution. In practice the limit S = ∞ cannot
be obtained, but a single numerical trajectory of (3.3) over a long time-interval
s ∈ [0, S] can be used to approximate the desired target density. Notice that the
time-like variable s is an artificial algorithmic time introduced to facilitate
sampling from the desired density.

From (3.2) we see that the Langevin equation becomes

dx0

ds
= ∇x0 ln ζ(x0)−∇x0J(x0, y) +

√
2
dW

ds
.

Here
∇x0J(x0, y) = −∇x0H(x0)T R−1[y −H(x0)]. (3.5)

Notice that the operators H and ∇x0H are calculated (or approximated) for
the implementation of 4DVAR. Thus this technology can be transported to
numerical algorithms for the Langevin equation arising in this context.

There are various generalizations of the Langevin equation that can also
be useful for sampling – including the second order Langevin equation
and preconditioning. We restrict discussion of these methods to the (infinite
dimensional) context of sampling path space, described in section 4.

3.3 Hybrid Monte Carlo

Another method that is succcesful in the context of sampling certain high di-
mensional probability distributions is Hybrid Monte Carlo. The starting
point is the Hamiltonian system of equations

d2x0

ds2
= ∇x0 ln ρ(x0|y). (3.6)

This equation defines a solution operator

M : (x0(0),
dx0

ds
(0)) 7→ (x0(S),

dx0

ds
(S))

mapping initial conditions to the solution at time S. With the notation

Px : (x, y) 7→ x

we construct the Markov chain

xn+1 = PxM(xn, ξn)

where the ξn are chosen to be i.i.d. Gaussian random variables with distribution
N (0, I). This Markov chain has ρ(x0|y) as an invariant density.
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3.4 Continuous Time Observations

Now assume that the Lagrangian information is carried in y, where

dy

dt
= g(x, y) + σ

dWy

dt
.

Let
H(x0, y, t) = g(Φ(x0; t), y)

and define

J(x0, y) =
1
2

∫ T

0

{‖dy

dt
−H(x0, y, t)‖2Σ +∇y ·H(x0, y, t)}dt.

It turns out (and we discuss this further in the next section) that exp(−J(x0, y))
may be thought of as a density on path space for y given x0. Hence we may
deduce that the pdf for (x0, y) is again of the form

ρ(x0, y) ∝ ζ(x0) exp
(
−J(x0, y)

)
, (3.7)

as before, and that Bayes rule gives

ρ(x0|y) ∝ ρ(x0, y).

We may again apply any sampling method which requires knowledge about
the posterior for x0 given y only up to a multiplicative constant. In particular
we may employ the Langevin SDE or Hybrid Monte Carlo. Both of these require
the derivative ∇x0J(x0, y) and this is∫ T

0

{−∇x0H(x0, y, t)T Σ−1
(dy

dt
−H(x0, y, t)

)
+

1
2
∇x0

(
∇y ·H(x0, y, t)

)
}dt.

(3.8)

4 Path Space Sampling and SPDEs

We now consider the case where γ 6= 0 and is invertible. Now the posterior
distribution to be sampled is on the space of paths, and is hence infinite dimen-
sional.

4.1 Density in Path Space

In order to develop a Bayesian approach to path sampling for {x(t)}t∈[0,T ],
conditional on observations, we need to define a probability density in path
space. To this end we define the following functionals:

I(x) =
1
2

∫ T

0

(
‖dx

dt
− f(x)‖2Γ +

1
2
∇x · f(x)

)
dt,

J(x, y) =
1
2

∫ T

0

(
‖dy

dt
− g(x, y)‖2Σ +

1
2
∇y · g(x, y)

)
dt,

JD(x, y) =
1
2

K∑
k=1

‖yk − hk(x(tk))‖2Σk
.
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Note that where the observation y appears in J it is a function, and where it
appears in JD it is a finite vector. Roughly speaking these three functionals are
sums (or integrals) of squared independent noises. The extra divergence terms
in I and J occur because all terms are interpreted in a symmetric fashion, with
respect to the time-like variable. Thus all derivatives in the t−direction below
should be approximated in a centred fashion. The divergence terms arise when
converting Itó (non-centred) to Stratonovich (centred) stochastic integrals in I
and J.

Here I(x) is known as the Onsager-Machlup functional for (2.1) and the
unconditional density for paths x solving (2.1) may be thought of as being
proportional to (see [13])

Q(x) := q(x)ζ(x(0))

where
q(x) := exp{−I(x)}

and ζ is the density of the initial condition for x(t). Similarly I(x) + J(x, y) is
the Onsager-Machlup functional for (2.1) and (2.2), with unconditional density
for paths x, y found by exponentiating the negative of this functional. Hence, by
Bayes rule, the conditional density for paths x solving (2.1), given observation of
y solving (2.2), may be thought of as being proportional to Q(x) := q(x)ζ(x(0))
where

q(x) := exp{−I(x)− J(x, y)}.

Similarly the conditional density for paths x solving (2.1), given observation of
y from (2.3), may be thought of as being proportional to Q(x) := q(x)ζ(x(0))
where

q(x) := exp{−I(x)− JD(x, y)}.

Note that, in all cases, q maps the Sobolev space of functions with square
integrable first derivative H1([0, T ]) into the positive reals R+. The observations
y parameterize q(x).

In the following two sections we will introduce continuous and discrete time
Markov chains whose invariant measure samples from densities on path space
such as the functionals Q(x) defined above. This will lead to SPDEs in subsec-
tion 4.2 and a Markov chain constructed through a PDE with random initial
data in subsection 4.3. The development is analogous to that in the previous
section, but is now infinite dimensional.

Defining the SPDEs will require calculation of the variational derivatives of
I(x), J(x, y) and JD(x, y) with respect to x. We list these derivatives here. To
this end it is useful to define

F(x) =
1
2
‖f(x)‖2Γ +

1
2
∇x · f(x)

H(x) = Γ−1df(x)− df(x)T Γ−1,

where df : Rd → Rd×d is the Jacobian of f . We also use dg : Rd × Rm → Rm×d

to denote the Jacobian of g with respect to x and dhj : Rd → Rm×d to denote
the Jacobian of hj with respect to x. Then the required variational derivatives
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are:
δI

δx
= −Γ−1 d2x

dt2
+H(x)

dx

dt
+∇xF(x)

δJ

δx
= −dg(x, y)T Σ−1[

dy

dt
− g(x, y)] +

1
2
∇x{∇y · g(x, y)},

δJD

δx
= −

K∑
k=1

dh(x(tk))T Σ−1
k [yk − hk(x(tk))]δ(t− tk). (4.1)

Notice that the last derivative is made up of point sources at the tk. If tK = T
then the jump induced by the delta function modifies the boundary condition
at t = T in the SPDEs that we write down in the next two sections. Otherwise
the delta jumps are in the interior of the domain for the SPDEs.

One important observation here is that the presence of the second term in
F , namely the divergence of f , is something which has caused some controversy
in the physics literature. A least squares definition of the density, based on
Gaussian white noise, misses the term. Even if it is included, its magnitude –
the factor 1

2 – has been queried [22]. The analysis in [16, 31] and numerical
experiments [38] are unequivocal that its presence is necessary and that the
pre-factor of 1

2 is the correct choice.
It is also because of this second term in F that we have concerns about

sampling methods which first discretize the SDE (2.1) and then apply standard
finite dimensional sampling techniques ([1]). Such an approach can lead to a
very indirect and numerically unsatisfactory approximation of the second term
(see [38]). For this reason we strongly recommend employing the methodology
outlined in this paper: namely to formulate an infinite dimensional sampling
method in path space, and then approximate it.

4.2 Langevin SPDEs Which Sample Path Space

As illustrated in finite dimensions, the basic idea of Langevin methods is
to construct a potential given by the gradient of the logarithm of the target
density and to consider motion in this potential, driven by noise [32, 33] –
see (3.3). In the path space case the desired target density is proportional to
Q(x) = q(x)ζ(x(0)). Ignoring the boundary conditions (i.e. ζ) for a moment,
we obtain the following SPDE for x(t, s) :

∂x

∂s
=

δ ln q(x)
δx

+
√

2
∂W

∂s
, (s, t) ∈ (0,∞)× (0, T ). (4.2)

Here s is an algorithmic time introduced to facilitate sampling in the space of
paths, parameterized by real time t, and ∂W

∂s is a white noise in (t, s). The
variational derivative of ln q(x) gives a second order differential operator in t
and so the PDE is of reaction-diffusion type, subject to noise. The details of
the SPDE depend upon whether the sampling of x is unconditional, or subject
to observations y; the latter may be in discrete or continuous time. The previous
section implicitly calculates the derivative of ln q(x) in each of these three cases,
through the variational derivatives of I(x), J(x) and JD(x).

To find boundary conditions for the SPDE we argue in the standard fashion
adopted in the calculus of variations. Notice that

lnQ(x + ∆x) = lnQ(x) + (
δ

δx
lnQ(x),∆x) +O(‖∆x‖2)
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where (·, ·) is the L2([0, T ]) inner product and ‖ · ‖ an appropriate norm. Now

(
δ

δx
lnQ(x),∆x) =(

δ

δx
ln q(x),∆x)

+〈dx(0)
dt

− f(x(0)) + Γ∇x ln ζ(x(0),∆x(0)〉Γ

−〈dx(T )
dt

− f(x(T )),∆x(T )〉Γ.

The first term on the right hand side gives the contribution to the derivative
of Q(x) appearing in the interior of the SPDE. Equating the second and third
terms to zero, for all possible variations ∆x, we obtain the following boundary
conditions for the SPDE:

∂x

∂t
− f(x) + Γ∇x ln ζ(x) = 0, t = 0, (4.3)

∂x

∂t
− f(x) = 0, t = T. (4.4)

The resulting SPDE (4.2)–(4.4) then has the desired equilibrium distribution.
When the observations are in discrete time and the last observation coincides

with the last point at which we wish to sample x (so that tK = T ) the delta
function at t = tK in the variational derivative of ln q(x) does not appear in the
interior t ∈ (0, T ) and instead modifies the second boundary condition to read

∂x

∂t
− f(x)− ΓdhK(x)T Σ−1

K [yK − hK(x)] = 0, t = T. (4.5)

The nonlinear boundary conditions (4.4), (4.5) both arise from jumps in the
derivative induced by the Dirac masses contained in the boundary term with
tK = T in (4.1).

Note that the case h(x) = x and yJ = x+ gives, in the limit where ΣK → 0,
the Dirichlet boundary condition x = x+ at t = T. Choosing ζ to be a Gaussian
centred at x−, and taking the limit of variance to zero, will also give a Dirichlet
boundary condition x = x− at t = 0. These Dirichlet boundary conditions
arise naturally in some applications of path sampling when bridges are studied
[31, 38].

By generalizing the second order Langevin method we obtain the fol-
lowing SPDE for x(t, s) :

∂2x

∂s2
+ ι

∂x

∂s
=

δ ln q(x)
δx

+
√

2ι
∂W

∂s
, (s, t) ∈ (0,∞)× (0, T ), (4.6)

with boundary conditions (4.3), (4.4). Here ι > 0 is an arbitrary positive
parameter whose value may be optimized to improve sampling. This SPDE is a
damped driven wave equation which yields the desired equilbrium distribution,
when marginalized to x. The equilibrium distribution gives white noise in true
time direction t for the momentum variable ∂x

∂s and this is hence natural initial
data for the momentum variable.

It is also of interest to discuss preconditioned Langevin equations. Let
G denote an arbitrary positive definite self-adjoint operator on the space of paths
and consider the following SPDEs derived from (4.2) and (4.6) respectively:

∂x

∂s
= G δ ln q(x)

δx
+
√

2G ∂W

∂s
, (s, t) ∈ (0,∞)× (0, T )
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and

G−1 ∂2x

∂s2
+ ι

∂x

∂s
= G δ ln q(x)

δx
+
√

2ιG ∂W

∂s
, (s, t) ∈ (0,∞)× (0, T ).

Some examples substantiating this idea are given in [16] and [4]; in particular
they show how to incorporate inhomogeneous boundary conditions in this con-
text. Formally both these SPDEs preserve the desired invariant measure, for
any choice of G.

The simplest way to use any of the Langevin SPDEs described above to
probe the desired (conditional) distribution on path space is as follows. Given
some function ϕ : C([0, T ], Rd) → R (such as the maximum value along the path,
or the value of |x(t)|2 at some time point t = τ) solve one of the Langevin SPDEs
numerically, discretizing with increment ∆s in the algorithmic time direction,
thereby generating a sequence xn(t) ≈ x(t, n∆s) (in practice this will need to
be discretized along the path in t as well as in s). For M sufficiently large, the
collection {xn(t)}n≥M form approximate samples from the desired distribution
in path space. Hence, as N →∞, the average

1
N

N−1∑
n=0

ϕ(xn(t)). (4.7)

will converge, by ergodicity, to an approximation of the average of ϕ in the
desired conditional distribution. This is a discrete time analogue of (3.4). (The
fact that we obtain an approximation, rather than the exact stationary value,
results from discretization of the SPDE in t, s – see [37, 39].) The role of G is to
accelerate convergence as N →∞ and this point is discussed in the conclusions.

4.3 Hybrid Monte Carlo Methods Which Sample Path
Space

By generalizing the Hybrid Monte Carlo method we obtain the following
Markov chain xn(t). Setting ι = 0 in the SPDE (4.6) gives the PDE

∂2x

∂s2
=

δ ln q(x)
δx

, (s, t) ∈ (0,∞)× (0, T ). (4.8)

The boundary conditions are again (4.3), (4.4). This equation defines a solution
operator

M : (x(0),
∂x

∂s
(0)) 7→ (x(S),

∂x

∂s
(S))

mapping initial conditions to the solution at algorithmic time s = S. With the
notation

Px : (x, y) 7→ x

we construct the Markov chain

xn+1 = PxM(xn, ξn) (4.9)

where the ξn are chosen to be i.i.d. Gaussian white noises in the true time
direction t. This yields the desired equilibrium distribution. The formula (4.7)
can again be used to probe the desired conditional distribution. Each step of the
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Markov chain requires the solution of a nonlinear wave equation over an interval
of length S in s. Because numerical approximation of the wave equation (and
hence M) can lead to errors the formula (4.7) will in practice again only give an
approximation of the true ergodic limit as N → ∞. Pre-conditioning can also
be used in the context of the Hybrid Monte Carlo method, replacing (4.8) by

∂2x

∂s2
= G2 δ ln q(x)

δx
, (s, t) ∈ (0,∞)× (0, T ).

Again, G is used to accelerate convergence to stationarity. In this case the
Markov chain (4.9) is generated by Gaussian ξ with mean zero and covariance
G2.

The Hybrid Monte Carlo method was introduced and studied for discretiza-
tions of the path sampling problem in [1] where choices for the operator G were
also discussed.

5 Remarks on Other MCMC Methods

The Langevin S(P)DEs and the Hybrid Monte Carlo methods both give rise to
Markov chains which, if solved exactly (which is impossible in almost all practi-
cal situations), sample exactly from the desired distribution in their stationary
measure. They are all examples of MCMC methods. But there is no reason
to restrict sampling methods to these particular MCMC methods and in this
section we briefly outline directions which might be fruitfully pursued to get
improved sampling. We restrict our discussion to the case of path sampling as
this high (infinite) dimensional setting is particularly challenging.

5.1 Metropolis-Hastings

In practice the MCMC methods in the previous section require numerical ap-
proximation of an (S)PDE in (s, t). This will incur errors and hence the station-
ary distribution will only be sampled approximately. The errors arising from
integration in s can be corrected by means of a Metropolis-Hastings accept-
reject criterion (see [25, 32]). Furthermore, optimizing the choice of time-step
in s can improve efficiency of the algorithm – we outline this below.

To apply the Metropolis-Hastings idea in path space, first discretize the
path {x(t)} giving rise to a vector x at the grid points. In the case of discrete
observations this grid should ideally be chosen to include the observation times
{tj}. The signal {y(t)} in the case of continuous time observations should also
be discretized on the same grid.

The target density Q(x) can then be approximated, using finite differences on
the integrals, to define a finite-dimensional target density QD(x). By discretiz-
ing the SPDEs in the previous section on the same grid of points in t, as well
as discretizing in s, we obtain a proposal distribution. Moves according to this
proposal distribution (discretized SPDE) are then accepted or rejected with the
Metropolis-Hastings probability leading to a Markov chain with invariant den-
sity QD(x). Thus the effect of error introduced by integrating in s is removed;
and the error due to approximation in t is controlled by the approximation of
Q(x) by QD(x).
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If a small time-step is used in s then the proposal distribution is not far from
the current position of the Markov chain. This is known as a local proposal and
for these there is a well-developed theory of optimality for the resulting MCMC
methods [33]. The variance of an estimator in a Markov chain is given by the
integrated autocorrelation function. Roughly speaking, very small steps in s
are undesirable because the correlation in the resulting Markov chain is high,
leading to high variance in estimators, which is inefficient; on the other hand,
large steps in s lead to frequent rejections, which is also inefficient, again because
correlation between steps is high when rejections are included. Choosing the
optimal scaling of the step in s, with respect to the number of discretization
points used along the path {x(t)}, is an area of current research activity [4],
building on the existing studies of MCMC methods in high dimensions [33]. In
the context of Metropolis-Hastings, good choices for the preconditioner G are
ones which approximately equilibrate the convergence rates in different Fourier
modes of the distribution. With this in mind, an interesting choice for G is a
Green’s operator for − d2

dt2 with homogeneous boundary conditions (see [16], [4],
[1]).

If the integration time S is small in the Hybrid Monte Carlo method, then
again the proposal distribution is local in nature. However, larger S will lead to
better decorrelation, and hence efficiency, if the rejection rate is not too large.
Hence it is of interest to study optimal choices for S, as a function of the number
of discretization points, for this problem.

5.2 Global Moves

Langevin methods have a potential problem for the sampling of multi-modal
distributions, namely that they can get stuck in a particular mode of the dis-
tribution for long times, because of the local (in state space) nature of the
proposals. The Hybrid Monte Carlo method goes some way to ameliorating
this issue as it allows free vibrations in the Hamiltonian given by the logarithm
of the target density, and this is known to be beneficial in many finite dimen-
sional sampling problems. However it is undoubtedly the case that sampling in
path space will frequently be accelerated if problem specific global moves are
incorporated into the proposal disctributions. This is an open area for investi-
gation. In the context of bridges the paper [20] contains some ideas that might
form the basis of global proposal moves; but these are not likely to extend to
data assimilation directly.

6 Relationship to Other Approaches

The purpose of this section is to discuss the approach advocated in this paper
in relation to others prevalent in practice.

The first observation is that 4DVAR is, in general, likely to be a highly
ineffectual way of probing the posterior distribution; it will only be of value when
the distribution is close to Gaussian, and has small variance – see the discussion
in section 3. 4DVAR was first studied for data assimilation in [24, 6, 36]. More
recent references include [23, 18, 27, 28, 14, 2, 3].

The second observation is that, in the language of signal-processing, the
Bayesian method proposed here is performing smoothing, not filtering. This
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is because we sample from x(t), t ∈ [0, T ] given the entire set of observations on
[0, T ], whereas filtering would sample from x(t) given only observations in [0, t].
Filtering is appropriate in applications where the data is on-line. But for off-line
data, smoothing is quite natural. Off-line situations arise when performing pa-
rameter estimation, for example. There are also applications in Lagrangian data
assimilation for oceanic velocity fields where data is only available infrequently
and the off-line setting is appropriate.

The third observation concerns the relationship between what we advocate
here, and the standard method for performing filtering for nonlinear SDEs con-
ditional on observations. The rest of this section is devoted to this relationship.
Standard methods are based on the Zakai equation and its generalizations.
The Zakai equation is a linear partial differential equation for the probability
density of the signal, conditional on observations. It is thus in the form of a
Fokker-Planck equation, driven by noise (the observation). Informally it may
be derived by employing the unconditional Fokker-Planck equation for (2.1) as
a prior, and incorporating the observations via Bayes law; the Markovian struc-
ture of the signal and observations allows filtering to be performed sequentially
0 → T . Smoothing can then be performed by means of a backward sweep, us-
ing a similar linear SPDE, incorporating data in reverse time T → 0. See [34],
Chapter 6, and the bibliographical Notes on Chapter 6, for further details and
references.

A significant problem with use of the Zakai equation in the context of high
dimensional problems (d � 1) is that the independent variables are in Rd and it
is notoriously difficult to solve PDEs in high dimensions. Particle filters are
a good tool for approximation of the Zakai equation in moderate dimension [7],
but can be difficult to use in very high dimension. Weather prediction leads to d
of order 108 and solution of the Zakai equation by particle filters is impractical.
In this context two simplifications are usually introduced. The first is to use the
extended Kalman filter (EKF) [5] which proceeds by linearising the system
and propagating a Gaussian model for the uncertainty; it is hence necessary to
update the mean in Rd and the covariance matrix in Rd×d sequentially, a task
which is significantly easier than solving the Zakai equation. However even this
approximation is impractical for large d and further approximations, primarily
to effect dimension reduction on the covariance matrix, are performed; this leads
to the ensemble Kalman filter (EnKF) [9] and its generalizations [30].

The approach we advocate in this paper is conceptually quite different from
those based on the Zakai equation, and its Gaussian approximations. Instead
of trying to sample from the probability distribution of the signal, at each point
in time, by sequential means, we try to sample an entire path of the signal,
from a distribution on path space. This leads to a nonlinear SPDE in one space
dimension (t) and one time-like dimension indexing the sampling (s). The high
dimension d enters as dimension of the dependent variable x(t, s) which solves
the SPDE; in contrast the Zakai equation has dimension d in the independent
variable. The nonlinear SPDE proposed here hence has a considerable com-
putational advantage over methods based on the Zakai equation, at least for
problems which cannot be approximated in a Gaussian fashion.
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7 Pedagogical Example – Sampling Initial Data

We study an example to illustrate Langevin sampling in the initial data space
– i.e. when γ = 0 in (2.1). Thus we are in the framework of section 3. We
use the Langevin equation to probe the desired probability distribution, and
compare our results with both the extended Kalman filter (EKF), and the en-
semble Kalman filter (EnKF). We choose an example where the posterior can
be calculated exactly, and then pushed forward to the final time where it is fair
to compare both filtering methods (EKF, EnKF) and smoothing methods (our
posterior sampling).

In order to illustrate our comparison between numerical methods we take
the following explicitly solvable example. We study the equation

dx

dt
= x− x3, x(0) = x0 ∼ N (a, σ2

init),

noting that this equation, and its linearization, can both be solved exactly. The
observations are in discrete time and take the form

yk = x(kδ) +N (0, σ2
obs), i = 1, · · · ,K.

Given the observations, the posterior on the initial data can be calculated ex-
actly, using the fact that the solution operator Φ(x0; t) in (3.1) can be calculated
analytically, and no numerical approximation is needed. The exact solution op-
erator is also used in the Langevin sampler and particle filters. Furthermore,
we also use the fact that the derivative of Φ with respect to x0 can be calcu-
lated analytically; this enables us to find the term ∇x0H(x0) in the Langevin
equation (3.5) explicitly, without resorting to numerical approximation. For
more complex problems these tasks will have to be carried out by numerical
approximation, of course.

The exact posterior distribution on x0 can be mapped forward explicitly to
obtain the exact posterior at any time t, including t = T = Kδ. Notice that the
exact posterior corresponds to solving the smoothing problem. The Langevin
approach hence directly approximates the smoothing problem. Both EKF and
EnKF aproximate the filtering problem. Filtering and smoothing, if exact, only
coincide at the final time t = T. Hence we compare the methods at this time,
for which EKF (resp. EnKF) is identical to the smoother analogue EKS (resp.
EnKS).

We now present three numerical experiments illustrating the behaviour of
the Langevin sampler, in comparison with Kalman-based methods. We use
the perturbed observation EnKF as presented in [9]. In all of the three figures
presented in this section, the solid black curve is the exact posterior. Our interest
is hence in how well this is replicated by the different sampling methods. We
choose a = −0.1, σinit = 0.2, σobs = 0.8, and K = 10. The three figures differ
only in the frequency of observations δ (which is 0.095, 0.09, and 0.3 for Figures
1, 2, and 3 respectively) and the initial condition x0 (which is 0.5 for Figures
1 and 2 but 0.0001 for Figure 3). Note that the actual initial condition used is
not the mean of the prior distribution on x(0). We chose a very large sample
size (50000) for both the EnKF and Langevin method, so that we can compare
the results without dealing with sampling issues.

Figure 1 shows a situation in which both the Langevin sampling and EnKF
reproduce the target posterior density very well; the EKF, performs quite poorly.
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That the EKF performs poorly is fairly typical for problems with any appreciable
nonlinear effects and Figure 2 again shows the EKF performing poorly. In this
case the EnKF is appreciably better than the EKF, but is outperformed by the
Langevin method. Finally, Figure 3 shows a situation where the EnKF fails to
produce a reasonable approximation at all, but once again the Langevin method
performs excellently. (The EKF is not shown here).

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2
Exact posterior at t=T
Approx. using EnKF
Approx. using Langevin SDE
EKF posterior

Figure 1: Comparison of the exact posterior distribution, the Langevin approx-
imation, and approximations by EnKF and EKF .

The moral of these numerical experiments is that standard techniques, widely
used in pratice, and based on approximations of the Kalman filter, can fail when
applied to nonlinear problems which are far from Gaussian. The Langevin
method, however, is very robust (although this does come at the expense of a
considerable increase in computational complexity). For this reason we proceed
in the next section to generalize the Langevin method to the sampling of path
space, necessary whenever the basic model dynamics (2.1) is stochastic – γ 6= 0.

8 Pedagogical Example – Sampling Path Space

We discuss a simple example motivated by Lagrangian data assimilation. We
use the example to illustrate the use of the (first order) Langevin SPDE for
sampling conditional paths of (2.1) when γ 6= 0. In the previous example the
exact posterior was available analytically so that evaluation of the methods
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Figure 2: Comparison of the exact posterior distribution, the Langevin approx-
imation, and approximations by EnKF and EKF .

studied was straightforward. In this path-space example we choose a problem
where the posterior mean can be calculated so that we may again evaluate the
sampling method.

Consider a one dimensional velocity field of the form

v(y, t) = x1(t) + x2(t) sin(y) + x3(t) cos(y)

where the xk(t) are Ornstein-Uhlenbeck processes solving

dxk

dt
= −αxk + γ

dWx,k

dt
. (8.1)

We assume that the particles are initially stationary and independent so that
each xk(0) is distributed as N (0, γ2/2α), with density ζ(x) ∝ exp{−αx2/γ2}.

We study the question of making inference about the paths {xk(t)} from
the observation of L drifters {y`}L

`=1 moving in the velocity field, and subject
to random forcing idealized as white noise (e.g. molecular diffusion):

dy`

dt
= v(y`, t) + σ

dWy,`

dt
. (8.2)

Here the Wx,k and Wy,` are independent standard Brownian motions. The initial
conditions for the y` are i.i.d. random variables drawn from the distribution
N (0, 2π).
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Figure 3: Comparison of the exact posterior distribution, the Langevin approx-
imation, and approximations by EnKF .

Writing y = (y1, . . . , yL)T and Wy = (Wy,1, . . . ,Wy,L)T we obtain

dy

dt
= h(y)x + σ

dWy

dt
, (8.3)

where h : RL → RL×3, σ ∈ R+.
In this case the Langevin SPDE (4.2)–(4.4) is hence

∂x

∂s
=

1
γ2

∂2x

∂t2
− α2

γ2
x +

1
σ2

h(y)T [
dy

dt
− h(y)x]

− 1
2
∇y · h(y)T +

√
2
∂W

∂s
, (s, t) ∈ (0,∞)× (0, T )

∂x

∂t
= + αx, (s, t) ∈ (0,∞)× {0}

∂x

∂t
=− αx, (s, t) ∈ (0,∞)× {T}

x =x0, (s, t) ∈ 0× [0, T ].

Because the SPDE is linear, the mean x̄ in the stationary measure is found
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by removing the derivative in s and the noise to obtain

1
γ2

d2x̄

dt2
− α2

γ2
x̄− 1

σ2
h(y)T h(y)x̄ = − 1

σ2
h(y)T dy

dt
+

1
2
∇y · h(y)T , t ∈ (0, T ),

dx̄

dt
= +αx̄, t = 0,

dx̄

dt
= −αx̄, t = T.

Note that if σ � min(γ, 1) then, formally, the equation for the mean is domi-
nated by the normal equations

h(y)T [
dy

dt
− h(y)x̄] ≈ 0

which arise from trying to solve the over-determined equation (8.3) for x, when
the noise is ignored. But when noise is present, however small, dy

dt exists only
as a distribution (it has the regularity of white noise) and so the second order
differential operator in x, which incorporates prior information on x, is required
to make sense of the mean.

Our numerical experiments are conducted as follows. We set α = γ = σ =
1 and generated a single path for each xk, k = 1, 2, 3 solving (8.1) on the
interval t ∈ [0, 10], using stationary initial conditions as described above. We
also generated the trajectories of 500 drifters yi moving according to (8.2), with
initial conditions drawn from a Gaussian distrbution as described above. We
then chose L drifter paths, with L = 5, 50 and 500 respectively, and solved
the Langevin SPDE to sample from the distribution of the xk. We integrated
over 100 algorithmic time units in s and approximated the mean of the xk,
together with one standard deviation, using (4.7). We also calculated the mean
directly by solving the boundary value problem for x̄. In all cases we used a
formally second order accurate approximation in the spatial variable t, and
for time-integration we used a linearly implicit method with Crank-Nicolson
approximation of the leading order differential operator. We emphasize that
the signals xk are not available to the Langevin SPDE or the boundary value
problem: only information about the drifters y` is used to reconstruct the xk.
The signals are shown in the following figures so that the reconstruction of the
signal may be judged.

The results are shown in Figures 4, 5 and 6, corresponding to L = 5, 50 and
500 respectively. In each figure we consider x1 in the top panel, x2 in the middle
and x3 at the bottom. The actual signal xk is the non-smooth curve whilst the
mean of the desired conditional distribution, found by solving the equation for
x̄, is the smooth curve. The shaded bands show an estimate of one standard
deviation about the mean, with both mean and standard deviation estimated
by time averaging solution of the Langevin SPDE in s.

The figures illustrate two facts, one a property of the path sampling proce-
dure we propose in this paper, the second a property of the desired conditional
distribution for this data assimilation problem. The first fact is this: because
the true mean x̄ lies in the middle of the shaded band, it is clear that the es-
timate of the mean, calculated through time-averaging, is accurate at s = 100.
The second fact is this: as L is increased our ability to recover the actual signal
increases; this is manifest in the fact that the mean gets closer to the signal,
and the standard deviation bounds get tighter.
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To give some insight into how long the Langevin SPDE has to be integrated
to obtain accurate time averages, we generated data analogous to that in Fig-
ure 4, but only integrated to algorithmic time s = 10. The results are shown in
Figure 7. The fact that x̄ no longer lies in the middle of the shaded bands, at
least for some parts of the paths, indicates that the time average of the path
has not converged to the mean value in the stationary distribution.
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Figure 4: Reconstruction of the xi solving (8.1), together with one standard
deviation bounds, on s ∈ [0, 100]; 5 drifters are used.

9 Challenges

We have presented an approach to data assimilation that will be useful for
problems which are highly non-Gaussian. It is a Bayesian framework based on
sampling the posterior distribution by MCMC methods, especially the Langevin
equation. Both deterministic and stochastic model dynamics are considered. In
the former case the posterior is on the initial data; in the latter case it is on
the space pf paths. The approach outlined here presents a number of significant
scientific challenges. We outline some of these, breaking the challenges down
into three categories: applications, mathematical and computational.

9.1 Applications

• In the context of short term weather prediction, Gaussian based Kalman
filter approximation often appears quite effective; it would be interesting
to quantify this by comparing with the Bayesian approach described here.

• In the context of Lagrangian data assimilation for oceans, it would be of
interest to use the methodology proposed here to study the multi-modal
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Figure 5: Reconstruction of the xi solving (8.1), together with one standard
deviation bounds, on s ∈ [0, 100]; 50 drifters are used.

problems which often arise quite naturally, and for which the extended
Kalman filter diverges.

• For both weather prediction and ocean modelling it would be of interest to
incorporate the methodology proposed here for the purposes of parameter
estimation. In this context the paths of (2.1) are treated as missing data
which are sampled to enable estimation of parameters appearing in (2.1)
itself. A Gibbs sampler ([32]) could be used to alternate between the
missing data and the parameters.

• There are many other potential applications of this methodology in chem-
istry, physics, electrical engineering and econometrics, for example.

9.2 Mathematical

• The SPDEs which arise as the formal infinite dimensional Langevin equa-
tions, and the related PDE which arises in the hybrid Monte Carlo method,
all lead to significant problems in analysis concerned with the existence,
uniqueness, ergodicity and rate of convergence to stationarity. Some of
these issues have been resolved for particular forms of nonlinearity in (2.1)
and (2.2) (see [15], [16]) primarily for vector fields f , and g in the case
of continuous time observations, which are combinations of gradients and
linear vector fields.

• For non-gradient vector fields the presence of the term H(x)∂x
∂t causes

particlar problems in the development of a theory for the SPDE as, when
the solution operator for the linear part of the Langevin SPDE is applied
to it, a definition of stochastic integral is required. Numerical evidence

23



-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

c
o
e
ff

. 
o
f 

1

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

c
o
e
ff

. 
o
f 

s
in

(y
)

0 2 4 6 8 10
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0

c
o
e
ff

. 
o
f 

c
o
s
(y

)

Figure 6: Reconstruction of the xi solving (8.1), together with one standard
deviation bounds, on s ∈ [0, 100]; 500 drifters are used.

as well as the derivation of I(x) by means of the Girsanov formula, sug-
gests that this should be a Stratonovich-type centred definition, but the
mathematical analysis remains to be developed. A related, but simpler,
mathematical question arises in the interpretation of the stochastic inte-
gral with respect to y arising in (3.8).

• In some applications the underlying path to be sampled arises from an
SPDE itself: i.e. equation (2.1) is itself an SPDE; it would be of interest
to derive the relevant Langevin SPDE here, in which the variable t would
appear as a spatial variable, in addition to the spatial derivatives already
appearing in (2.1).

• We have assumed for simplicity that white noise affects all components of
the signal and observation equations; relaxing this assumption is natural
in some applications, and it would be of interest to find the relevant SPDEs
for sampling in this case; as mentioned in section 2 this case arises when
studying model error.

9.3 Computational

• Sampling the posterior distribution of the smoothing problem is, in gen-
eral, costly in terms of computational time. A major challenge is to under-
stand situations where sampling the posterior of the smoothing problem
is necessary from an applied viewpoint, and then to develop efficient al-
gorithms for doing so.

• If the dimension d is high then, since the number of dependent variables
in the SPDEs proposed here will scale like d, techniques are required to
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Figure 7: Reconstruction of the xi solving (8.1), together with one standard
deviation bounds, on s ∈ [0, 10]; 5 drifters are used. Note that the estimate of
the mean (the middle of the shaded bands) is not always close to the actual
mean (the smooth curve). This should be contrasted with Figure 4 which is on
a longer interval in algorithmic time s.

reduce the dimensionality for sampling; multiscale methods are likely to
be useful in this context [12]. Some interesting work in this direction,
using relative entropy, may be found in [10].

• Within the context of Langevin algorithms it would be of interest to study
choices of the pre-conditioner G, and discretization method for the SPDE,
which lead to efficient algorithms; efficiency in this context should be
measured through the integrated auto-correlation function which quan-
tifies the fluctuations in estimates of the form (4.7), for expectations of
ϕ(x(·)) with respect to the desired conditional measure [33].

• Similar considerations apply to Hybrid Monte Carlo methods, and the
choice of pre-conditioner.

• It is also of interest to compare first order and second order Langevin based
methods with one another and with the Hybrid Monte Carlo method, once
good pre-conditioners have been found. See [1] for a step in this direction.

• The use of other MCMC methods to sample the desired probability mea-
sures on path space should also be explored. It is common practical ex-
perience that, whilst Langevin type methods are provably efficient within
the context of methods using local (in state space) proposals [33], greater
speed-ups can often be obtained by incorporating additional global moves,
based on problem specific knowledge.

• The issue of how to discretize the SPDE is also non-trivial. In particular
for non-gradient vector fields in (2.1), (2.2), the term H(x)∂x

∂t needs to be
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discretized carefully (as discussed above centred differencing is necessary
in our formulations of the SPDE) essentially for the same reasons that the
SPDE theory is hard to develop in this case.
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