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Abstract

For many practical problems it is useful to be able to sample con-
ditioned diffusions on a computer (e.g. in filtering/smoothing to sample
from the conditioned distribution of the unknown signal given the known
observations). We present a recently developed, SPDE-based method to
tackle this problem. The method is an infinite dimensional generalisation
of the Langevin sampling technique.

1 Introduction

In many situations, understanding the behaviour of a stochastic system is greatly
aided by understanding its behaviour conditioned on certain events. This al-
lows, for example, to study rare events by conditioning on the event happening
or to analyse the behaviour of a composite system when only some of its com-
ponents can be observed. Since properties of conditional distributions are often
difficult to obtain analytically, it is desirable to be able to study these distri-
butions numerically. This allows to develop meaningful conjectures about the
distribution in question or, in a more applied context, to derive quantitative
information about it. In this text we present a general technique to generate
samples from conditional distributions on infinite dimensional spaces. We give
several examples to illustrate how this technique can be applied.

Sampling, i.e. finding a mechanism which produces random values distri-
buted according to a prescribed target distribution, is generally a difficult prob-
lem. There exist many ‘tricks’ to sample from specific distributions, ranging
from very specialised methods, like the Box-Müller method for generating one-
dimensional standard Gaussian distributed values, to generic methods, like re-
jection sampling, which can be applied to whole classes of distributions. In sit-
uations where none of the direct methods apply in a useful way, Markov Chain
Monte Carlo (MCMC) methods are commonly applied. These techniques work
by constructing a Markov chain (or, more generally, a Markov process) which
has the target distribution as its stationary distribution. Assuming that the
process converges to stationarity fast enough, the states of the Markov chain at
‘large’ times can be used as approximate samples from the target distribution.
While MCMC methods are only approximate methods, they can be used in
many situations where no other methods are available. This is particularly true
in high dimensional problems and thus it is natural to employ MCMC methods
for infinite dimensional sampling problems. Indeed, the main tool described in
this text is an MCMC method for distributions on infinite dimensional spaces.
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The stochastic systems of interest here are diffusion processes described by
stochastic differential equations. The trajectories of these processes can be con-
sidered to be random functions and thus the probability distributions we con-
sider typically live on function spaces like L2

(
I,Rd

)
or C

(
I,Rd

)
where I ⊆ R is

some interval. Thus, in order to construct an MCMC method for these distri-
butions, we have to find Markov processes which have prescribed distributions
on these function spaces as their invariant measures. In the context of our
framework these Markov processes are given as solutions of stochastic partial
differential equations (SPDEs), where the interval I is the ‘space’ direction of
the SPDE.

Throughout this text we give several concrete examples of conditioned dif-
fusions and how to sample from them. A simple case is to condition the process
on its value at a fixed time, so that the resulting paths are bridges. Sampling
bridges could, for example, be interesting when studying transitions between
meta-stable states of some physical system: while these transitions will even-
tually happen, the times between transitions might be so big that they ‘never’
occur during an unconditioned numerical simulation. By conditioning on a tran-
sition actually happening, one can numerically study the transition mechanism.

A second application presented here will be “smoothing”, i.e. reconstruct-
ing a signal from a noisy observation. Since all information which is available
about such a signal is contained in the conditional distribution of the signal
given the observation, one can solve smoothing problems by understanding this
conditioned distribution.

The text is structured as follows: we start by presenting some well-known
sampling techniques in section 2, namely Metropolis sampling and the Langevin
method. In section 3 we introduce an infinite dimensional generalisation of
Langevin sampling. Section 4 explains how this technique can be used to study
conditioned diffusions in general and section 5 considers the special case of
smoothing problems. Finally, in section 6, we present how the infinite dimen-
sional Langevin method can be combined with Metropolis sampling to obtain
numerically efficient methods. The conclusion in section 7 contains some point-
ers to extensions of the method and open problems.

2 Sampling Techniques

Sampling is the process of constructing random values, distributed according
to a prescribed target distribution. Since our aim is to derive a numerically
useful method, we are specifically interested in constructions which can be im-
plemented on a computer. Generating random values in a computer program
is usually done in two steps: first one uses a pseudo-random number generator
to generate ‘random’ values for some simple distribution (usually the uniform
distribution on the unit interval) and then, in a second step, these values are
transformed to obtain the desired target distribution. In this text we will only
consider the second step, i.e. we will assume the availability of a source of uni-
form or Gaussian distributed random numbers and describe methods to trans-
form given random values in order to obtain values with the correct distribution.

We give an overview of some established sampling techniques which we will
use later in the text. Since our aim is to sample distributions on infinite dimen-
sional spaces, we restrict the presentation to techniques which can be applied
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in this context.

2.1 The Metropolis-Hastings Algorithm

A commonly used sampling technique is based on the Metropolis-Hastings algo-
rithm. The idea behind this method is to modify a given Markov chain, using a
rejection mechanism, in order to obtain a Markov chain with a given stationary
distribution. This new Markov chain can then be used as the basis of an MCMC
algorithm.

Theorem 1 Let P be the transition kernel of a Markov chain taking values in
some measurable space (X ,F , µ). Let µ be a probability measure on X . Assume
that µ(dy)P (y, dx) is absolutely continuous w.r.t. µ(dx)P (x, dy) on X ×X . In-
ductively construct a process (Xn)n∈N as follows: for n ∈ N let Yn ∼ P (Xn−1, · )
and Un be uniformly distributed on [0, 1], where Yn, given Xn−1, is conditionally
independent of X1, . . . , Xn−2 and Un is independent of everything else, and let

Xn =

{
Yn, if Un ≤ α(Xn−1, Yn), and
Xn−1 else,

where α is the (truncated) Radon-Nikodym derivative

α(x, y) = 1 ∧ µ(dy)P (y, dx)
µ(dx)P (x, dy)

.

Then (Xn)n∈N is a Markov chain with stationary distribution µ.

The value α(Xn−1, Yn) is called the acceptance probability at step n, the
value Yn is called a proposal.

This theorem allows to change the distribution of any Markov chain which
visits a large enough part of the state space, by rejecting some of the steps, in
order to obtain a given stationary distribution. Then, assuming the resulting
Markov chain is ergodic, one can compute expectations w.r.t. the stationary
distribution µ, by taking ergodic averages:

Eµ(f) = lim
N→∞

1
N

N∑
n=1

f(Xn).

The usefulness of this method depends strongly on the magnitude of the ac-
ceptance rates: if α(Xn−1, Yn) is often very small, convergence of the ergodic
average will be very slow. For practical use, the transition kernel P has to be
chosen in a way such that the acceptance probabilities are reasonably large.

A special case of the Metropolis-Hastings algorithm is when the transition
kernel P does not depend on Xn−1. This corresponds to the case when the
proposals are generated from an i.i.d. sequence. Because the acceptance prob-
ability at step n depends on the value Xn−1, the resulting Markov chain is no
longer i.i.d. This method is called the independence sampler.

The independence sampler can for example be used to sample bridges of
diffusion processes: If the target distribution µ is absolutely continuous w.r.t.
Brownian bridges, one can use independent Brownian bridges as proposals. The
independence sampler then gives a Markov chain with the bridge-distribution µ
as its stationary distribution. See [CPS04] for a discussion of this method.
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2.2 Langevin Sampling

Another method to obtain samples from a distribution on Rd with a density
w.r.t. Lebesgue measure, called Langevin sampling, is given in the next theorem.

Theorem 2 Let ϕ ∈ C2
(
Rd,R) be a strictly positive probability density w.r.t.

the Lebesgue measure λ. Then the SDE

dXt = ∇ logϕ(Xt) dt+
√

2 dWt,

where W is a standard Brownian motion, has ϕdλ as its stationary distribution.

The SDE in the theorem is called the Langevin equation. One observation
which often turns out to be very useful in practice is the fact that, similar to
the situation for the Metropolis-Hastings algorithm, the density ϕ needs to be
known only up to a multiplicative constant: changing the constant does not
change the resulting Langevin equation.

While this method is known to work well in high dimensions, at first it seems
difficult to extend this technique to more general spaces, since the theorem
uses a densities w.r.t. Lebesgue measure; the latter does not exist in infinite
dimensions. But it transpires that there is a variant of the idea which can be
generalised.

Theorem 3 Let L ∈ Rd×d be a symmetric matrix such that the SDE

dZt = LZt dt+
√

2 dWt,

has a stationary distribution ν. Let ϕ ∈ C2
(
Rd,R) be a strictly positive proba-

bility density w.r.t. ν. Then the SDE

dXt =
(
LXt +∇ logϕ(Xt)

)
dt+

√
2 dWt,

where W is standard Brownian motion, has ϕdν as its stationary distribution.

A generalisation of this theorem to infinite dimensional spaces, presented in
the next section, forms the basis of our sampling framework. Later, in section 6,
we will see how a discretised version of the Langevin equation can be used to
generate proposals for the Metropolis-Hastings algorithm, thus combining the
two methods presented in this section.

3 Langevin Equations on Path Space

In this section we introduce the infinite dimensional analogue of the Langevin
equation from section 2.2. The abstract setting is as follows: the SDEs in
theorem 3 are replaced by stochastic evolution equations taking values in a real
Banach space E, continuously embedded into a real separable Hilbert space H.
In our applications the space H will mostly be the space L2

(
[0, 1],Rd

)
and E

will be some subspace of C
(
[0, 1],Rd

)
.
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3.1 Linear Equations

In this section we derive a Hilbert space valued, linear SDE to sample from
Gaussian distributions on H. The results of this section can all be stated and
proved in H without reference to the embedded Banach space E. A more
detailed analysis can be found in [HSVW05].

Recall that a random variable X taking values in a separable Hilbert space
H is said to be Gaussian if the law of 〈y,X〉 is Gaussian for every y ∈ H. It
is called centred if E〈y,X〉 = 0 for every y ∈ H. Gaussian random variables
are determined by their mean m = EX ∈ H and their covariance operator
C : H → H defined by

〈y, Cx〉 = E
(
〈y,X −m〉〈X −m,x〉

)
.

For details see e.g. [Bog98]. We denote the Gaussian measure with mean m and
covariance operator C by N (m, C).

We consider the H-valued SDE

dzt = Lzt dt+
√

2 dwt (1)

where w is a cylindrical Wiener process on H and L = −C−1. A process z is a
mild solution of (1), if it satisfies

zt = eLtz0 +
√

2
∫ t

0

eL(t−s) dws.

Since this equation is linear, solutions are Gaussian processes and its invariant
measure is a Gaussian measure on H:

Theorem 4 Let µ = N (0, C) be a centred Gaussian measure on a separable
Hilbert space H. Then the corresponding evolution equation (1) with L = −C−1

has continuous H-valued mild solutions. Furthermore, it has µ as the unique
invariant measure and there exists a constant K such that for every initial con-
dition x0 ∈ H one has∥∥L(zt)− µ∥∥TV

≤ K
(
1 + ‖x0‖H

)
exp
(
−‖C‖−1

H→Ht
)
,

where ‖ · ‖TV denotes the total variation distance between measures.

By the theorem, equation (1) can be used to sample from centred Gaussian
measures and by considering the process (zt+m)t≥0 we have a sampling equation
for arbitrary Gaussian measures N (m, C) on H. To implement this method one
has to identify the operator L. The following example shows how this can be
done in the cases which are the focus of our interest here.

Example 1. Consider the Rd-valued, linear SDE

dZu = AZu du+B dWu, Z0 = z− (2)

on the time interval [0, 1], where A,B ∈ Rd×d are matrices and x− ∈ Rd is the
starting point. The solution is a Gaussian process with mean m(u) = E(Zu) =
euAx− and covariance function

C(u, v) = Cov(Xu, Xv) = euA
(∫ u∧v

0

e−rABB∗e−rA
∗
dr
)

evA
∗
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(see e.g. [KS91, section 5.6] for reference). It is easy to check that the corre-
sponding covariance operator C is given by

(Cx)(u) =
∫ 1

0

C(u, v)x(v) dv

for all u ∈ [0, 1], x ∈ L2([0, 1],Rd) and, assuming BB∗ is invertible, the nega-
tive of its inverse L = −C−1 is the restriction of the distributional differential
operator

L = (∂u +A∗)(BB∗)−1(∂u −A) (3)

to the domain

D(L) =
{
f ∈ H2([0, 1],Rd)

∣∣ f(0) = 0, ∂uf(1) = Af(1)
}
.

Thus, the stationary distribution of

dzt = L(zt −m) dt+
√

2 dwt (4)

is N (m, C).
Since L is a differential operator, we can write (4) as an SPDE. Using the

fact that Lm = 0 on (0, 1), this formally leads to the equation

∂tz(t, u) = Lz(t, u) +
√

2 ∂tw(t, u) ∀(t, u) ∈ (0,∞)× (0, 1)

z(t, 0) = z−, ∂uz(t, 1) = Az(t, 1) ∀t ∈ (0,∞)

where ∂tw is space-time white noise. By theorem 4, the stationary distribution
of this SPDE coincides with the distribution of the process Z.

3.2 Semilinear Equations

In this subsection we will derive the infinite dimensional analogue of theorem 3.
Here, the process (zt)t≥0 from (1) will correspond the (Zt)t≥0 in theorem 3. The
equation for (Xt)t≥0 will be replaced by a semilinear equation of the form

dxt = Lxt dt+ F (xt) dt+
√

2 dwt, (5)

where L is a linear operator on H, the drift F maps E into E∗, w is a cylindrical
Wiener process on H, and the process x takes values in E. As in the previous
subsection, we consider mild solutions of this equation.

For our application of sampling conditioned diffusions, presented in the next
section, we will have a distribution-valued drift function F which is only defined
on the Banach space of continuous functions. Thus we need the setting described
above and cannot use the Hilbert space based theory as found e.g. in [DPZ92].
Proofs of the results presented here can be found in [HSV07].

We start the presentation by giving the assumptions which we will require
for our results. There are two assumptions on the linear operator L:

(A1) The operator L is a self-adjoint, strictly dissipative operator on H which
generates an analytic semigroup S(t). The semigroup S(t) can be re-
stricted to a C0-semigroup of contraction operators on E.
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(A2) LetHα be the domain of (−L)α, equipped with the inner product 〈x, y〉α =
〈(−L)αx, (−L)αy〉. Then there exists an α ∈ (0, 1/2) such that Hα ⊂ E
densely, (−L)−2α is nuclear inH, and the Gaussian measureN

(
0, (−L)−2α

)
is concentrated on E.

We write H−α for the dual of Hα and identify H∗ with H in the usual way
to get the following chain of inclusions:

H1/2 ↪→ Hα ↪→ E ↪→ H ↪→ E∗ ↪→ H−α ↪→ H−1/2.

To formulate our conditions on the drift F we will also use the subdifferential
of the norm ‖ · ‖E , defined as

∂‖x‖E =
{
x∗ ∈ E∗

∣∣ x∗(x) = ‖x‖E and x∗(y) ≤ ‖y‖E ∀y ∈ E
}

for every x ∈ E. We require the following conditions.

(A3) The nonlinearity F : E → E∗ is Fréchet differentiable with

‖F (x)‖E∗ ≤ C(1 + ‖x‖E)N , and ‖DF (x)‖E→E∗ ≤ C(1 + ‖x‖E)N .

for every x ∈ E.

(A4) There exists a sequence of Fréchet differentiable functions Fn : E → E
such that

lim
n→∞

∥∥Fn(x)− F (x)‖−α = 0

for all x ∈ E. For every C > 0 there exists a K > 0 such that for all x ∈ E
with ‖x‖E ≤ C and all n ∈ N we have ‖Fn(x)‖−α ≤ K. Furthermore,
there is a γ > 0 such that

〈x∗, Fn(x+ y)〉 ≤ −γ‖x‖E

holds for every x∗ ∈ ∂‖x‖E and every x, y ∈ E with ‖x‖E ≥ C(1+‖y‖E)N .

Our results currently require another, quite technical condition, on the drift F
which is given here as (A5). While this condition looks quite artificial, it is easy
to verify that it holds for all applications discussed in this text.

(A5) For every R > 0, there exists a Fréchet differentiable function FR : E → E∗

such that

FR(x) =

{
F (x), for ‖x‖E ≤ R, and
0, for ‖x‖E ≥ 2R,

(6)

and such that there exist constants C and N with

‖FR(x)‖E∗ + ‖DFR(x)‖E→E∗ ≤ C(1 +R)N ,

for every x ∈ E.

Definition 5 An E-valued and (Ft)-adapted process x is called a mild solution
of equation (5), if almost surely

xt = S(t)x0 +
∫ t

0

S(t− s)F
(
xs
)
ds+ zt ∀t ≥ 0

holds where z is the solution of the linear equation (1).
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The drift F in (5) takes only values in E∗ while the operator L will have a
smoothing effect. There is a balance between these two effects and it is not a
priori clear in which space the resulting process takes its values. The following
theorem asserts that our assumptions are strong enough so that the solution is
continuous with values in E.

Theorem 6 Let L and F satisfy assumptions (A1)–(A4). Then for every ini-
tial value x0 ∈ E the equation (5) has a global, E-valued, unique mild solution.

From theorem 4 we know that the linear equation (1) has stationary distribu-
tion ν = N (0,−L−1). The following theorem, which is the infinite-dimensional
analogue of theorem 3, shows that we can again get an equation to sample
from ϕdν by adding ∇ logϕ to the drift of the linear equation.

Theorem 7 Let U : E → R be bounded from above and Fréchet differentiable.
Assume that L and F = U ′ satisfy assumptions (A1)–(A5), let ν = N (0,−L−1).
Then the probability measure µ given by

dµ(x) = c eU(x) dν(x),

where c is a normalisation constant, is the unique invariant measure for (5).

The following result helps to convert the preceding theorem into useful nu-
merical methods: properties of the target distribution µ can be found by con-
sidering ergodic averages of the solution of the SDE (5).

Theorem 8 Assume that (A1)–(A5) hold and let µ be the invariant measure
for (5). Then one has

lim
T→∞

1
T

∫ T

0

ϕ(xt) dt =
∫
E

ϕ(x)µ(dx), almost surely

for every initial condition x0 in the support of µ and for every bounded measur-
able function ϕ : E → R.

While these theorems are formulated in a way that helps to identify the
stationary distribution of a given stochastic evolution equation, we will use the
equations in the reverse way: starting with a target distribution µ with a known
density ϕ = eU w.r.t. a Gaussian measure ν we will construct semilinear SDEs
with invariant measure µ. From theorem 7 we know that a possible choice for
the drift is F = (logϕ)′, in direct analogy with the finite dimensional result
from Theorem 3. This procedure is illustrated in the following example.

Example 2. Consider the Rd-valued SDE

dXu = AXu du+ f(Xu) du+B dWu, X0 = x− (7)

on the time interval [0, 1], where A,B ∈ Rd×d are matrices, x− ∈ Rd is the
starting point and W is a standard Brownian motion on Rd. In this situation
we can apply the following form of the Girsanov formula.
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Lemma 9 Let ν = L(Z) be the distribution of the solution of the linear SDE (2)
and µ = L(X) be the distribution of the solution of (7). Assume that (7) has
a.s. no explosions until time 1 and that B is invertible. Then µ has a density ϕ
w.r.t. ν on C

(
[0, 1],Rd

)
which is given by

ϕ(X) = exp
(∫ 1

0

(BB∗)−1f(Xu) dXu

−
∫ 1

0

〈
AXu +

1
2
f(Xu), (BB∗)−1f(Xu)

〉
du
)
.

If f = −BB∗∇V for some potential V : Rd → R, then ϕ can be written as

ϕ(X) = exp
(
V (X0)− V (X1)

−
∫ 1

0

〈
AXu +

1
2
f(Xu), (BB∗)−1f(Xu)

〉
+

1
2

div f(Xu) du
)
.

Proof. Since X (by assumption) and Z (since it solves a linear SDE) have
no explosions, we can apply Girsanov’s theorem [Elw82, Theorem 11A] to find
the densities of L(X) and L(Z) w.r.t. the distribution of the Brownian mo-
tion L(BW ). Taking the ratio of these two densities gives the first expression
for ϕ. The second form of ϕ can be found by applying Ito’s formula to V (X)
and substituting the result into the first part.

In the following we will assume that f has the required gradient form so
we can use the second form of ϕ from the lemma (without the stochastic in-
tegral). From example 1 we obtain a second-order differential operator L on
L2
(
[0, 1],Rd

)
such that

dzt = L(zt −m) dt+
√

2 dwt,

where m is the mean of Z, has stationary distribution ν. From theorem 7 we see,
assuming (A1)–(A5) are satisfied, that we can add the drift F = (logϕ)′ to this
equation to obtain a C

(
[0, 1],Rd

)
-valued SDE with stationary distribution µ. A

simple calculation shows

F (x) = (BB∗)−1f(x1)δ1 −∇Ψ(x) ∀x ∈ C
(
[0, 1],Rd

)
where δ1 is a Dirac mass at u = 1 and Ψ is given by

Ψ(ξ) =
〈
Aξ +

1
2
f(ξ), (BB∗)−1f(ξ)

〉
+

1
2

div f(ξ) ∀ξ ∈ Rd. (8)

Under mild assumptions on A, B and f , the conditions for theorems 6, 7 and 8
are satisfied and the stationary distribution of

dxt = L(xt −m) dt+ F (xt) dt+
√

2 dwt

coincides with the distribution of the process X. An explicit set of assumptions
on A, B, and f for the result to hold can be found in [HSV07].

Again, we would like to write this equation as a stochastic partial differential
equation. In order to do so, we should just add the drift F to the SPDE from
example 1. One complication is the presence of the Dirac-term in F . Since,
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assuming smooth w for this argument, the source term (BB∗)−1f(x1)δ1 will lead
to a jump of size f(x1) in the u-derivative of the solution, we can incorporate
the Dirac term in the boundary condition by formally writing the SPDE as

∂tx(t, u) = Lx(t, u)−∇Ψ(x(t, u)) +
√

2 ∂tw(t, u) ∀(t, u) ∈ (0,∞)× (0, 1)

x(t, 0) = x−, ∂ux(t, 1) = Ax(t, 1) + f(x(t, 1)) ∀t ∈ (0,∞).

4 Conditioned Diffusions

In the previous sections we have seen how the Langevin sampling method can
be generalised to infinite dimensional situations and how this can be used to
construct SPDEs which sample from the distribution of a finite dimensional dif-
fusion process. In this section we focus on our main interest of this text, namely
on applying the presented techniques to sample from conditioned diffusion pro-
cesses.

Consider the following Rd-valued SDE on the time interval [0, 1]:

dXu = AXu du+ f(Xu) du+B dWu, X0 = x−. (9)

As before, A,B ∈ Rd×d are matrices, x− ∈ Rd is the starting point, W is a
standard Brownian motion on Rd and we assume that f = −BB∗∇V for some
potential V : Rd → R and that B is invertible. Our aim is to construct an SPDE
which has the distribution of X, conditioned on some event C, as its stationary
distribution.

Let Z be the solution of the linear SDE

dZu = AZu du+B dWu, Z0 = x− (10)

and set m(u) = E(Z(u)|C) for all u ∈ [0, 1]. In the cases we consider here, the
event C is such that L(Z|C) is still Gaussian. The general idea is to perform a
construction consisting of the following steps.

1. Use the results of section 3.1 to obtain an L2-valued SDE which has the
centred Gaussian measure L(Z −m|C) as its stationary distribution.

2. Use the Girsanov formula and results about conditional distributions to
derive the density of the conditional distribution L(X|C) w.r.t. L(Z|C).
Using substitution, this gives the density of the shifted distribution L(X−
m|C) w.r.t. the centred measure L(Z −m|C).

3. Use the results of section 3.2 and the density from step 2 to derive a
C
(
[0, 1],Rd

)
-valued SDE with stationary distribution L(X −m|C). Shift-

ing the process by m reverses the centring from step 2 and gives the
required sampling equation. Optionally write the L2-valued SDE as an
SPDE.

Combining all these steps leads to an SPDE which samples from the conditional
distribution L(X|C) in its stationary measure. The details of the above steps
depend on the specific situation under consideration. We will study one special
case in detail in the next section, where we develop a method for nonlinear
filtering by using the Langevin method to sample from the distribution of some
signal given the observations. In the remainder of this section we illustrate the
technique in a simpler setting.
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Example 3. We can use the technique described above to construct an SPDE
which samples bridges from

dXu = AXu du+ f(Xu) du+B dWu, X0 = x−, X1 = x+, (11)

that is, the stationary distribution of the SPDE coincides with the distribution
of solutions of the SDE (9), conditioned on X1 = x+.

Step 1: We need to find an SPDE with stationary distribution L(Z|Z1 = x+).
Mean and covariance of the conditioned process can be found by conditioning
the random variable

(
Z(u), Z(v), Z(1)

)
for u ≤ v ≤ 1 on the value of Z(1). Since

this is a finite dimensional Gaussian random variable, mean and covariance of
the conditional distribution can be explicitly calculated. Let m and C be the
mean and covariance function of L(Z). Then L(Z|Z1 = x+) is a Gaussian
measure with mean

m̃(u) = m(u) + C(u, 1)C(1, 1)−1
(
x+ −m(1)

)
and covariance operator C̃ with C̃x =

∫
C̃( ·, v)x(v) dv where the covariance

function is given by

C̃(u, v) = C(u, v)− C(u, 1)C(1, 1)−1C(1, v).

A simple calculation shows that L̃ = −C̃−1 is again the differential operator L
from (3), but this time on the domain

D(L̃) =
{
f ∈ H2([0, 1],Rd)

∣∣ f(0) = 0, f(1) = 0
}
.

Thus the stationary distribution of

dzt = L̃zt dt+
√

2 dwt

is L(Z − m̃|Z1 = x+) by theorem 4.
Step 2: We have already seen in example 2 that the density of L(X) w.r.t. L(Z)

is given by

ϕ(X) = exp
(
V (x−)− V (X1)−

∫ 1

0

Ψ(Xu) du
)

with the Ψ from equation (8). The following lemma shows that the density of
L(X|X1 = x+) w.r.t. L(Z|Z1 = x+) coincides, up to a multiplicative constant,
with ϕ.

Lemma 10 Let P,Q be probability measures on S × T where (S,A) and (T,B)
are measurable spaces and let X : S×T → S and Y : S×T → T be the canonical
projections. Assume that P has a density ϕ w.r.t. Q and that the conditional
distribution QX|Y=y exists. Then the conditional distribution PX|Y=y exists and
is given by

dPX|Y=y

dQX|Y=y
(x) =

{
1
c(y)ϕ(x, y), if c(y) > 0, and

1 else

where c(y) =
∫
S
ϕ(x, y) dQX|Y=y(x) for all y ∈ T .

11



Thus, the density of L(X −m|X1 = x+) w.r.t. L(Z −m|Z1 = x+) is

ϕ̃(X) = c exp
(∫ 1

0

Ψ(Xu +mu) du
)

for some normalisation constant c where Ψ is given by (8).
Step 3: Assuming that the conditions for theorems 6, 7 and 8 are satisfied,

the stationary distribution of

dx̃ = Lx̃ dt−∇Ψ(x̃+ m̃) dt+
√

2 dwt

is then L(X − m̃|X1 = x+). Thus the process x = x̃+ m̃, solving

dxt = L(xt − m̃) dt−∇Ψ(xt) dt+
√

2 dwt, (12)

can be used to sample from the target distribution L(X|X1 = x+).
Finally, we can rewrite this evolution equation as an SPDE: Since the mean

m̃ satisfies m̃(0) = x−, m̃(1) = x+ and Lm̃ = 0 on (0, 1), we can formally
write (12) in the form

∂tx(t, u) = Lx(t, u)−∇Ψ(x(t, u)) +
√

2 ∂tw(t, u), ∀(t, u) ∈ (0,∞)× (0, 1)

x(t, 0) = x−, x(t, 1) = x+ ∀t ∈ (0,∞).

Note that use of this formulation no longer requires knowledge of the conditioned
mean m̃.

Figure 1 shows the result of a numerical simulation which implements the
method derived in example 3 to sample bridges of the process (11). For the
simulation we use the drift

f(x) = −
( (x− 1)2(x+ 1)2

1 + x2

)′
= x

( 8
(1 + x2)2

− 2
)
, (13)

A = 0, B = I and the end-points x− = −1 and x+ = +1. To allow the
process to transition a few times between the stable equilibrium points, we chose
u ∈ [0, 100]. The upper panel illustrates how one can get an approximation to
a typical sample path of (11): it displays u 7→ x(t, u) for a big value of t.
Assuming that the sampling process is already close to equilibrium, this path
should closely resemble a typical bridge path. The second panel illustrates
how statistical properties of the bridges can be approximated by taking ergodic
averages using theorem 8. The line in the centre of the shaded band shows

m̄(u) =
1
T

∫ T

0

x(t, u) du

as a function of u for a big value of T . By theorem 8 we have m̄(u) ≈ m̃(u).
The width of the band is given by

σ̄(u) =
( 1
T

∫ T

0

(
x(t, u)− m̄(u)

)2
du
)1/2

.

Again by theorem 8, σ̄(u) is approximately equal to the standard deviation of
the bridge at position u.
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5 Nonlinear Smoothing

In this section we will give a more challenging application of the method de-
veloped in the previous sections: we will describe how nonlinear smoothing
problems can be formulated as a problem of sampling conditioned diffusions
and how it can be solved using Langevin sampling.

Let d = m+n with m,n ∈ N and consider a d-dimensional diffusion process
given by

dXu = AXu du+ f(Xu) du+B dWu, X0 = x−

where B is invertible and (BB∗)−1f is a gradient. Assume that only the last n
components of this process can be observed and that we want to gain as much
knowledge as possible about the unobservedm components from one observation
of the last n components. We write Xu = (X(1)

u , X
(2)
u ) ∈ Rm×Rn and call X(1)

the “signal” and X(2) the “observation”.
While the problem is formally very easy to solve, the solution is just the

conditional distribution L(X(1)|X(2)), the task of actually algorithmically com-
puting this solution is quite challenging. There are two commonly used ways of
solving this problem: the traditional method, employed for example in particle
filters, is to use the Zakai equation to construct an approximation to the density
of L(X(1)

u |X(2)
v , 0 ≤ v ≤ u). The solution we propose here is to construct an

SPDE which samples from the distribution L(X(1)|X(2)). Questions about this
conditional distribution can then be answered by considering ergodic averages.
It transpires that this way of solving the smoothing problem can be derived as
a special case of the general technique of sampling from conditioned diffusions
which we presented in section 4.

Commonly, finding L(X(1)
u |X(2)

v , 0 ≤ v ≤ u) is called “filtering” and finding
L(X(1)|X(2)) is called “smoothing”. The standard methods, like the Kalman
filter and particle filter based approaches, proceed by first solving the filter-
ing problem and then, optionally, solving the smoothing problem in a second,
backward sweep over the data. The method we propose here directly solves the
smoothing problem and thus all observations must be present from the start of
the computation.

5.1 Construction of the Smoothing SPDE

The construction of the SPDE to sample from the conditional distribution
of X(1) given X(2) follows the steps outlined in section 4. We start the con-
struction by considering the linear, Rm+n-valued SDE

dZu = AZu du+B dWu, Z0 = x− (14)

which will give our reference measure as before. Since this SDE is linear, its
solution is a Gaussian process, and thus the distribution L(Z(1)|Z(2)) is also
Gaussian. First we have to identify the mean and covariance of this distribution.
The abstract mechanism we use here is given in the following lemma.

Lemma 11 Let H = H1 ⊕ H2 be a separable Hilbert space with projectors
Πi : H → Hi. Let (Z(1), Z(2)) be an H-valued Gaussian random variable with
mean m = (m1,m2) and positive definite covariance operator C and define
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Cij = ΠiCΠ∗j . Then the conditional distribution of Z(1) given Z(2) is Gaus-
sian with mean

m1|2 = m1 + C12C−1
22

(
Z(2) −m2

)
and covariance operator

C1|2 = C11 − C12C−1
22 C21.

If we define as above L = (−C)−1 and formally define Lij = ΠiLΠ∗j , then a
simple formal calculation shows that m1|2 and C1|2 are expected to be given by

m1|2 = m1 − L−1
11 L12

(
Z(2) −m2

)
, C1|2 = −L−1

11 . (15)

In contrast to the lemma above, the relations (15) do not hold in general (con-
sider for example the case C1|2 = 0), but in our situation it can be shown that
domains for the operators Lij can be chosen so that all of the given expres-
sions are defined and that the conditional mean and expectation really have
the form given in (15). Details of this construction can be found in [HSVW05,
lemma 4.6]. By theorem 4, the L2

(
[0, 1],Rd

)
-valued SDE

dzt = L11zt dt+
√

2 dwt

has L(Z(1)−m1|2|Z(2)) as its stationary distribution. We have already identified
the differential operator L in section 3.1.

Now we can just follow the programme outlined in section 4: the version
of Girsanov formula from lemma 9 gives the density ϕ of L(X) w.r.t. L(Z).
From lemma 10 we know that the conditional density ϕ1|2 of X(1) given X(2)

differs from x 7→ ϕ(x,X(2)) only by a multiplicative constant which depends
only on X(2). Thus we have ∇ logϕ1|2 = ∇1 logϕ( · , X(2)) where ∇ denotes the
Fréchet derivative on C

(
[0, 1],Rd) and ∇1 denotes the Fréchet derivative w.r.t.

the first m components. By theorem 7 the equation

dxt = L11(xt −m1|2) dt+∇1 logϕ(xt, X(2)) dt+
√

2dwt

has L(X(1)|X(2)) as its stationary distribution and thus can be used as a Monte
Carlo method to solve the smoothing problem.

Example 4. In the standard smoothing setup the signal X(1) evolves on its
own without reference to the observation. The observation depends both on the
signal and on additional noise. To fit this situation in the framework described
above we consider the following case:

A =
(

0 0
A21 0

)
, B =

(
B11 0
0 B22

)
,

with A21 ∈ Rn×m, B11 ∈ Rm×m and B22 ∈ Rn×n. Furthermore let V (x, y) =
V1(x)+V2(y) and f = −BB∗∇V . In this situation, equation (14) can be written
as

dX(1) = f1(X(1)) du+ B11 dW
(1)

dX(2) = f2(X(2)) du+A21X
(1) du+B22 dW

(2)
(16)
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with f1 = −B11B
∗
11∇V1 and f2 = −B22B

∗
22∇V2.

For this choice of the matrices A and B the differential operator L is(
L11 L12

L21 L22

)
=
(
∂u A∗21
0 ∂u

)(
B11B

∗
11 0

0 B22B
∗
22

)−1(
∂u 0
−A21 ∂u

)
=
(
∂u(B11B

∗
11)−1∂u −A∗21(B22B

∗
22)−1A21 A∗21(B22B

∗
22)−1∂u

−∂u(B22B
∗
22)−1A21 ∂u(B22B

∗
22)−1∂u

)
,

defined on some appropriate domain. A more detailed analysis, as found in
[HSVW05, section 4], shows that L11 in (15) can be taken to be L11 on the
domain

D(L11) =
{
f ∈ H2([0, 1],Rd)

∣∣ f(0) = 0, ∂uf(1) = 0
}
.

From (15) we find that m1|2 is the solution of

L11(m1|2 −m1) = −A∗21(B22B
∗
22)−1

(dZ(2)

du
−m2

)
.

Here dZ(2)

du only exists as a distribution, but since L11 is a second order differ-
ential operator, the solution m1|2 is a smooth function.

The density of L(X(1)|X(2)) w.r.t. L(Z(1)|Z(2)) can be simplified because of
the simple structure of the matrices A and B: we get

ϕ(X(1)|X(2)) = c exp
(
− V1(X(1)

1 )− 1
2

∫ 1

0

|B−1
11 f1(X(1)

u )|2 + div f1(X(1)
u ) du

−
∫ 1

0

〈X(1)
u , A∗21(B22B

∗
22)−1f2(X(2)

u )〉 du
)

for some normalisation constant c and the density of the target distribution
µ = L(X(1) − m1|2|X(2)) w.r.t. ν = L(Z(1) − m1|2|Z(2)) is ϕ(X − m1|2|Y ).
Thus, for given X(2), the Fréchet derivative of logϕ(X(1)|X(2)) is

F (x) = ∇1 logϕ(x|X(2)) = −∇V1(x1)δ1 −∇Φ(x)−A∗21(B22B
∗
22)−1f2(X(2))

for all x ∈ C
(
[0, 1],Rm

)
, where δ1 is a Dirac mass at u = 1 and

Φ(ξ) =
1
2
(
|B−1

11 f1(ξ)|2 + div f1(ξ)
)

∀ξ ∈ Rm.

With F we have found the drift to be used in theorem 7: the equation

dx̃t = L11x̃t dt−∇Φ(x̃t +m1|2) dt−A∗21(B22B
∗
22)−1f2(X(2)) dt

−∇V1(x̃t(1) +m1|2(1))δ1 dt+
√

2 dwt

is ergodic and has L(X(1) −m1|2|X(2)) as its stationary distribution. Defining
xt = x̃t +m1|2 for all t ≥ 0 and formally writing the equation for x as an SPDE
again, we find that the SPDE

∂tx(t, u) = (B11B
∗
11)−1∂2

ux(t, u)−∇Φ
(
x(t, u)

)
+A∗21(B22B

∗
22)−1

(dX(2)

du
(u)− f2(X(2)(u))−A21x(t, u)

)
+
√

2 ∂tw(t, u) (17)
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with boundary conditions

x(t, 0) = 0, ∂ux(t, 1) = f1
(
x(t, 1)

)
for all t ≥ 0 is the Langevin equation on C

(
[0, 1],Rm

)
to sample from the

distribution L(X(1)|X(2)). In the derivation above we did not check whether
the conditions (A1), . . . , (A5) which are required for our sampling method are
satisfied. In general this depends on the specific choice of f , A and B. A
(quite technical) set of conditions such that the theorems apply can be found
in [HSV07].

A comparison between the sampling equation derived here and the equation
derived in example 2 to sample from the unconditional distribution L(X(1))
reveals that the only difference caused by the conditioning is the presence of the
term

A∗21(B22B
∗
22)−1

(dX(2)

du
(u)− f2(X(2)(u))−A21x(t, u)

)
.

The presence of this additional drift term moves the solution of the sampling
SPDE towards paths X(1) which minimise the ‘energy’ of the noise required for
the second equation in (16) to hold.

Figure 2 illustrates the resulting smoothing method for the system

dX(1)
u = f(X(1)

u ) du+ dW (1)
u , X

(1)
0 = −1

dX(2)
u = X(1)

u du+ dW (2)
u , X

(2)
0 = 0

where f is the double-well drift from (13). The upper panel shows the ‘true’ sig-
nal X(1) (unknown to the algorithm), together with a reconstruction obtained
by the smoothing method described above. The displayed band was obtained
again as in example 3. Since the observation (not displayed) contains not only
information about the signal, but also unknown additional noise, a perfect recon-
struction is not possible. But the figure shows that the reconstruction captures
the main features of the signal. Other statistical quantities of the conditional
distribution of the signal, given the observation, like the number of transitions
between the two equilibrium points can be computed similarly by taking ergodic
averages. The lower panel shows a typical path of the conditional distribution
for comparison with the ‘true’ signal in the upper panel.

5.2 Some Remarks about Smoothing

While the sampling technique developed in the previous section solves the same
problem as traditional filters/smoothers do, it does so in a very different way: in-
stead of trying to obtain the density of the conditional distribution, our method
constructs samples from the conditional distribution which can be used as the
basis of an MCMC algorithm.

Filtering and smoothing are sometimes used in high dimensional situations.
For example applications in weather prediction, where filtering is used to incor-
porate the observed weather data into a model, now use values of d which are
as big as 107 or 108. When d is big, a map from Rd to R like the density of
L(X(1)

u |X(2)
v , 0 ≤ v ≤ u) is a complex object which is very hard to accurately

represent in a computer. A standard way to deal with this problem, used in
particle filter methods, is to approximate the conditional distribution as a sum
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of weighted Dirac masses. Another approach is to approximate the conditional
distribution by a Gaussian, but in high-dimensional situations even storing the
covariance matrix of this Gaussian has a non-negligible cost and sometimes even
further approximations are necessary. In comparison, a map from R to Rd, like
the paths obtained by the smoothing method discussed here, is a much more
manageable object. Thus the discussed method might be advantageous in high
dimensions when smoothing is required and not just filtering.

Another observation to note is that the situation considered in example 4 is
just one of many possible situations where a Langevin sampling based filtering
method can be derived. Similar constructions are possible in many situations,
for example it is easy to derive a sampling SPDE to sample from a diffusion
conditioned on discrete noisy observations. See [AJSV07] for further examples.

More information about filtering and pointers into the literature can be found
in [AHSV07].

6 Metropolis-Hastings Algorithm on Path Space

In the previous sections we showed how an infinite dimensional analogue of the
Langevin equation can be used to sample from the distribution of conditioned
diffusions. One of the main motivations behind this approach is that it directly
translates into an implementable algorithm to solve these sampling problems.
In this section we will discuss some issues which arise in this context. When
implementing the method for practical use one has to numerically solve the
sampling SPDE (5) and thus one has to discretise this equation in both ‘space’ u
and time t. The two kinds of discretisation raise different issues and here we
will mostly focus on the effects of discretising time.

There are two constraints which affect the choice of time step size ∆t. Firstly,
we are only interested in the stationary distribution of the sampling SPDE and
thus, for our purposes, it doesn’t matter if the numerical simulation accurately
represents the trajectories of the solution but we require the invariant measure
of the discretised equation to be close to the invariant measure of the exact
equation. And, secondly, we will use the numerical solution to approximate
ergodic averages as in theorem 8 and thus we need to simulate the solution
over long time intervals. This leads to a trade-off in the choice of the step
size ∆t: small ∆t requires many steps to cover big time intervals and thus
makes the resulting method computationally expensive whereas big ∆t leads to
big discretisation error and makes the results less accurate.

One solution to this dilemma is the following idea, described in more detail
in [BRSV07]: one can use a discretisation with a big step size ∆t, but then use a
rejection mechanism to compensate for the resulting discretisation error. More
specifically, given an approximation x̂(t) to the exact solution xt, a discretised
version of the evolution equation gives an approximation to the solution at
time t + ∆t. But instead of directly using the computed value ŷ(t + ∆t) for
the numerical solution, one can use it as the proposal in a Metropolis-Hastings
algorithm and either accept or reject it as described in theorem 1.

A (partially implicit) Euler method for solving the equation

dxt = Lxt dt+ F (xt) dt+
√

2 dwt, (18)
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from section 3.2 can be formulated as

Xn+1 = Xn + L
(
θXn+1 + (1− θ)Xn

)
∆t+ F (Xn) ∆t+

√
2 ξn,

where the ξn have the same distribution as the increments of the cylindrical
Wiener process w. The parameter θ ∈ [0, 1] controls the implicitness of the
method. We did not include implicitness in the evaluation of the non-linear
part F of the drift, to make it easy to solve the iteration equation for Xn+1:
One gets

Xn+1 =
(
I −∆t θL

)−1(
I + ∆t (1− θ)L

)
Xn

+ ∆t
(
I −∆t θL

)−1
F (Xn) +

√
2
(
I −∆t θL

)−1
ξn. (19)

It is not a priori clear what space this equation takes values in, since the
cylindrical Wiener process w, and thus its increments, do not live in the Hilbert
space H. However, since −L−1 is trace class (it is the covariance of a Gaussian
measure, see section 3.1), for θ > 0 the operator A = (I −∆t θL)−1 is Hilbert-
Schmidt and thus the random increments Aξn take values in H. For this reason
we restrict ourselves to the case θ > 0 here.

When trying to use Xn+1 as the proposal in a Metropolis algorithm, there
is the following surprising dichotomy.

Theorem 12 Let H = L2
(
[0, 1],Rd

)
and let L be a symmetric, negative definite

operator on H as in section 3.2. Let µ be the invariant measure of (18). Let
θ > 0 and define the transition kernel P on H by

P (x, · ) = L(Xn+1|Xn = x) ∀x ∈ H

where Xn+1 is defined by equation (19). Then there are two cases:
a) If θ 6= 1/2, then the distributions µ(dy)P (y, dx) and µ(dx)P (x, dy) on

H×H are singular w.r.t. each other and thus the Metropolis algorithm cannot
be used.

b) If θ = 1/2, then the distributions µ(dy)P (y, dx) and µ(dx)P (x, dy) on
H×H are equivalent and thus the Metropolis algorithm can be used.

Proof. For X ∈ H let 〈X〉u be the quadratic variation of X until time
u. Then, by imitating the proof of [BRSV07, proposition 4.1], for (X,Y ) ∼
µ(dx)P (x, dy) we have

〈Y 〉u =
(1− θ)2

θ2
〈X〉u ∀u ∈ [0, 1]

almost surely. Since under µ the quadratic variation is a.s. constant, this shows
that the measures in part a) are singular whenever (1−θ)2/θ2 6= 1, i.e. when θ 6=
1/2. A proof for part b) when L is a second derivative operator with Dirichlet
boundary conditions can be found in [BRSV07, theorem 4.1]. An inspection
of this proof reveals that it still holds in the more general situation considered
here.

To implement the methods described in this text, the Langevin SPDE needs
to be discretised in ‘space’ as well as in time. Some remarks about the required
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space discretisation can be found in [BRSV07]. For the space-discretised equa-
tion the dichotomy described in theorem 12 does not exist, every value of θ is
possible there. But the effect from the theorem is still visible: for θ 6= 1/2 one
needs to decrease ∆t when ∆u gets smaller in order to retain large enough ac-
ceptance probabilities. For θ = 1/2 one can decrease ∆u without decreasing ∆t.
This effect, as it occurs for the smoothing problem from example 4, is displayed
in figure 3.

7 Conclusion

In this text we have seen how an infinite dimensional generalisation of Langevin
sampling can be used to generate samples from conditioned diffusions. We have
seen that the presented method can be used as a common framework to solve
very different kinds of sampling problems, such as generating bridge paths from
SDEs and solving smoothing problems. The same framework can be applied
to many more kinds of problems. For example one can apply the same kind
of technique to processes indexed by a two-dimensional parameter instead of a
single time variable. This might give rise to techniques which could be applied in
image analysis, for example. It will be interesting to see what future applications
will be developed based on this.

Throughout this text, we concentrated on sampling techniques which were
direct generalisations of the finite dimensional result from theorem 3. But of
course, since we are only interested in the stationary distribution, the sampling
equation is not uniquely determined, many choices are possible. For example in
the finite dimensional case the SDE

dXt = LXt dt+∇ logϕ(Xt) dt+
√

2 dWt

and the “preconditioned” SDE

dXt = GLXt dt+G∇ logϕ(Xt) dt+
√

2GdWt,

where G is a symmetric, positive matrix, share the same invariant measure.
This relation carries over to the infinite dimensional situation. By taking e.g.
G = −L−1 one obtains a new equation with very different properties: the
cylindrical noise is now replaced by a significantly more regular noise, but the
smoothing effect from the operator L is no longer present. This technique
is discussed in [HSV07] and [BRSV07]. Other choices of sampling equations,
including second order equations, are discussed in [AHSV07].

In the further development of the presented sampling techniques, several
open problems remain. For example, in this text we always assumed that the
densities we obtained from the Girsanov formula can be rewritten without re-
sorting to a stochastic integral. This restricted the choice of drift functions for
the underlying diffusion processes to functions which are a gradient plus a lin-
ear function. It transpires that this restriction is not easily lifted: the theorems
presented here no longer apply and while it is easy to formally derive sampling
equations, it is very difficult to even give sense to the resulting equations. A
conjecture about the results in the non-gradient case can be found in [HSV07].

Other open problems include questions about efficient implementation of the
method. This requires numerical solutions of the resulting SPDEs and a careful
choice of step sizes for discretisation is required.
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Figure 1: Illustration of the bridge sampling method from example 3. The drift
f in (11) is chosen to be the gradient of a double-well potential with stable
equilibrium points at −1 and 1 and an unstable equilibrium point at 0 (see (13)),
the process starts in x− = −1 and is conditioned on ending up in x+ = +1. The
upper panel shows the value of the Langevin SPDE at time t = 105 as a function
of u. This is an approximation to a typical bridge path. The lower panel shows
a one-standard-deviation band around the mean of the solution as a function
of u, obtained by taking averages over the interval t ∈ [0, 105]. This gives an
approximation for the mean and standard deviation of the bridge process (11).
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Figure 2: Illustration of the smoothing method from example 4. The upper
panel shows the true signal (unknown to the algorithm) together with a one-
standard-deviation band around the mean of the sampling SPDE. This band can
be seen as a reconstruction of the signal, but since the observation (not displayed)
incorporates additional noise, a perfect reconstruction is not possible. The lower
panel shows a typical path of the conditional distribution of the signal, given the
observation, obtained by taking the value of the sampling SPDE at large t.
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Figure 3: This figure illustrates how the acceptance rates of the Metropolised
algorithm for a discretised version of the smoothing problem from example 4 de-
pend on the time discretisation step size ∆t. The different curves correspond to
different space discretisations ∆u. The upper panel gives the average acceptance
probabilities in equilibrium for θ = 1/2. In this case the Metropolis-Hastings al-
gorithm can also be applied to the infinite dimensional problem. The lower panel
illustrates the case θ = 0.4 which only makes sense for the discretised equation.
One can see that the method degenerates as ∆u→ 0.
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