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Abstract
In many applications it is important to be able to sample paths of SDEs conditional
on observations of various kinds. This paper studies SPDEs which solve such sam-
pling problems. The SPDE may be viewed as an infinite dimensional analogue of the
Langevin SDE used in finite dimensional sampling. Here the theory is developed for
conditioned Gaussian processes for which the resulting SPDE is linear. Applications
include the Kalman-Bucy filter/smoother. A companion paper studies the nonlinear
case, building on the linear analysis provided here.
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1 Introduction

An important basic concept in sampling is Langevin dynamics: suppose a target den-
sity p on Rd has the form p(x) = c exp(−V (x)). Then the stochastic differential
equation (SDE)

dx

dt
= −∇V (x) +

√
2
dW

dt
(1.1)

has p as its invariant density. Thus, assuming that (1.1) is ergodic, x(t) produces sam-
ples from the target density p as t→∞. (For details see, for example, [RC99].)

In [SVW04] we give an heuristic approach to generalising the Langevin method
to an infinite dimensional setting. We derive stochastic partial differential equations
(SPDEs) which are the infinite dimensional analogue of (1.1). These SPDEs sample
from paths of stochastic differential equations, conditional on observations. Observa-
tions which can be incorporated into this framework include knowledge of the solution
at two points (bridges) and a set-up which includes the Kalman-Bucy filter/smoother.
For bridge sampling the SPDEs are also derived in [RVE05], their motivation being to
understand the invariant measures of SPDEs through bridge processes. The Girsanov
transformation is used to study the connection between SPDEs and bridge processes
in [RVE05]; it is also used to study Gibbs measures on R in [BL03]. However the re-
sults concerning bridges in this paper are not a linear subcase of those papers because
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we consider non-symmetric drifts (which are hence not gradient) and covariance of
the noise which is not proportional to the identity. Furthermore the nonlinear results
in [HSV] include the results stated in [RVE05] as a subset, both because of the form of
the nonlinearity and noise, and because of the wide-ranging forms of conditioning that
we consider.

In the current paper we give a rigorous treatment of this SPDE based sampling
method when the processes to be sampled are linear and Gaussian. The resulting
SPDEs for the sampling are also linear and Gaussian in this case. We find it useful
to present the Gaussian theory of SPDE based sampling for conditioned diffusions in a
self-contained fashion for the following reasons.

• For nonlinear problems the SPDE based samplers can be quite competitive. A
companion article [HSV] will build on the analysis in this paper to analyse
SPDEs which sample paths from nonlinear SDEs, conditional on observations.
The mathematical techniques are quite different from the Gaussian methods used
here and hence we present them in a separate paper. However the desired path-
space measures there will be characterised by calculating the density with respect
to the Gaussian measures calculated here.

• We derive an explicit description of the Kalman/Bucy smoother via the solution
of a linear two-point boundary value problem. This is not something that we
have found in the existing literature; it is strongly suggestive that for off-line
smoothing of Gaussian processes there is the potential for application of a range
of fast techniques available in the computational mathematics literature, and dif-
ferent from the usual forward/backward implementation of the filter/smoother.
See section 4.

• For Gaussian processes, the SPDEs studied here will not usually constitute the
optimal way to sample, because of the time correlation inherent in the SPDE;
better methods can be developed to generate independent samples by factoris-
ing the covariance operator. However these better methods can be viewed as a
particular discretisation of the SPDEs written down in this paper, and this con-
nection is of both theoretical interest and practical use, including as the basis for
algorithms in the nonlinear case. See section 5 and [RSV].

In section 2 of this article we will develop a general MCMC method to sample
from a given Gaussian process. It transpires that the distribution of a centred Gaussian
process coincides with the invariant distribution of the L2-valued SDE

dx

dt
= Lx− Lm+

√
2
dw

dt
∀t ∈ (0,∞), (1.2)

where L is the inverse of the covariance operator, m is the mean of the process and w
is a cylindrical Wiener process.

The first sampling problems we consider are governed by paths of the Rd-valued
linear SDE

dX

du
(u) = AX(u) +B

dW

du
(u) ∀u ∈ [0, 1] (1.3)

subject to observations of the initial pointX(0), as well as possibly the end-pointX(1).
Here we have A,B ∈ Rd×d and W is a standard d-dimensional Brownian motion.
Since the SDE is linear, the solution X is a Gaussian process. Section 3 identifies
the operator L in the case where we sample solutions of (1.3), subject to end-point
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conditions. In fact, L is a second order differential operator with boundary conditions
reflecting the nature of the observations and thus we can write (1.2) as an SPDE.

In section 4 we study the situation where two processes X and Y solve the linear
system of SDEs

dX

du
(u) = A11X(u) +B11

dWx

du
(u)

dY

du
(u) = A21X(u) +B22

dWy

du
(u)

on [0, 1] and we want to sample paths from the distribution of X (the signal) condi-
tioned on Y (the observation). Again, we identify the operator L in (1.2) as a second
order differential operator and derive an SPDE with this distribution as its invariant
distribution. We also give a separate proof that the mean of the invariant measure of
the SPDE coincides with the standard algorithmic implementation of the Kalman-Bucy
filter/smoother through forward/backward sweeps.

Section 5 contains some brief remarks concerning the process of discretising SPDEs
to create samplers, and section 6 contains our conclusions.

To avoid confusion we use the following naming convention. Solutions to SDEs
like (1.3) which give our target distributions are denoted by upper case letters. So-
lutions to infinite dimensional Langevin equations like (1.2) which we use to sample
from these target distributions are denoted by lower case letters.

2 Gaussian Processes

In this section we will derive a Hilbert space valued SDE to sample from arbitrary
Gaussian processes.

Recall that a random variable X taking values in a separable Hilbert space H is
said to be Gaussian if the law of 〈y,X〉 is Gaussian for every y ∈ H (Dirac measures
are considered as Gaussian for this purpose). It is called centred if E〈y,X〉 = 0 for
every y ∈ H. Gaussian random variables are determined by their mean m = EX ∈ H
and their covariance operator C : H → H defined by

〈y, Cx〉 = E(〈y,X −m〉〈X −m,x〉).

For details see e.g. [DPZ92, section 2.3.2]. The following lemma (see [DPZ92, propo-
sition 2.15]) characterises the covariance operators of Gaussian measures.

Lemma 2.1 LetX be a Gaussian random variable on a separable Hilbert space. Then
the covariance operator C of X is self-adjoint, positive and trace class.

A Gaussian random variable is said to be non-degenerate if 〈y, Cy〉 > 0 for every
y ∈ H \ {0}. An equivalent characterisation is that the law of 〈y,X〉 is a proper
Gaussian measure (i.e. not a Dirac measure) for every y ∈ H \ {0}. Here we will
always consider non-degenerate Gaussian measures. Then C is strictly positive definite
and we can define L to be the inverse of −C. Since C is trace class, it is also bounded
and thus the spectrum of L is bounded away from 0.

We now construct an infinite dimensional process which, in equilibrium, samples
from a prescribed Gaussian measure. Denote by w the cylindrical Wiener process
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on H. Then one has formally

w(t) =
∞∑

n=1

βn(t)φn ∀t ∈ (0,∞), (2.1)

where for n ∈ N the βn are i.i.d. standard Brownian motions and φn are the (orthonor-
mal) eigenvectors of C. Note that the sum (2.1) does not converge in H but that one
can make sense of it by embedding H into a larger Hilbert space in such a way that the
embedding is Hilbert-Schmidt. The choice of this larger space does not affect any of
the subsequent expressions (see also [DPZ92] for further details).

Given C and L as above, consider the H-valued SDE given by (1.2), interpreted in
the following way:

x(t) = m+ eLt(x(0)−m) +
√

2
∫ t

0

eL(t−s) dw(s). (2.2)

If x ∈ C([0, T ],H) satisfies (2.2) it is called a mild solution of the SDE (1.2). We have
the following result.

Lemma 2.2 Let C be the covariance operator and m the mean of a non-degenerate
Gaussian random variableX on a separable Hilbert spaceH. Then the corresponding
evolution equation (1.2) with L = −C−1 has continuous H-valued mild solutions.
Furthermore, it has a unique invariant measure µ onH which is Gaussian with meanm
and covariance C and there exists a constant K such that for every initial condition
x0 ∈ H one has

‖law(x(t))− µ‖TV ≤ K (1 + ‖x0 −m‖H) exp(−‖C‖−1
H→Ht),

where ‖ · ‖TV denotes the total variation distance between measures.

Proof. The existence of a continuousH-valued solution of the SDE (1.2) is established
in [IMM+90]. The uniqueness of the invariant measure and the convergence rate in the
total variation distance follow by combining Theorems 6.3.3 and 7.1.1 from [DPZ96].
The characterisation of the invariant measure is established in [DPZ96, Thm 6.2.1].

We can both characterise the invariant measure, and explain the exponential rate of
convergence to it, by using the Karhunen-Loève expansion. In particular we give an
heuristic argument which illustrates why Lemma 2.2 holds in the case m = 0: denote
by (φn)n∈N an orthonormal basis of eigenvectors of C and by (λn)n∈N the correspond-
ing eigenvalues. If X is centred it is possible to expand X as

X =
∞∑

n=1

αn

√
λnφn, (2.3)

for some real-valued random variables αn. (In contrast to the situation in (2.1) the con-
vergence in (2.3) actually holds in L2(Ω,P,H), where (Ω,P) is the underlying prob-
ability space.) A simple calculation shows that the coefficients αn are i.i.d. N (0, 1)
distributed random variables. The expansion (2.3) is called the Karhunen-Loève ex-
pansion. Details about this construction can be found in [Adl81].
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Now express the solution x of (1.2) in the basis (φn) as

x(t) =
∞∑

n=1

γn(t)φn.

Then a formal calculation using (2.1) and (1.2) leads to the SDE

dγn

dt
= −γn

λn
+
√

2
dβn

dt

for the time evolution of the coefficients γn and hence γn is ergodic with stationary
distribution N (0, λn) for every n ∈ N. Thus the stationary distribution of (1.2) has the
same Karhunen-Loève expansion as the distribution of X and the two distributions are
the same. Furthermore, the fact that the rate of convergence to stationarity is bounded
independently of n is a manifestation of the exponential rate of convergence to station-
arity stated in Lemma 2.2.

In this article, the Hilbert spaceH will always be the space L2([0, 1],Rd) of square
integrable Rd-valued functions and the Gaussian measures we consider will be distribu-
tions of Gaussian processes. In this case the operator C has a kernelC : [0, 1]2 → Rd×d

such that

(Cx)(u) =
∫ 1

0

C(u, v)x(v) dv. (2.4)

If the covariance function C is Hölder continuous, then the Kolmogorov continuity
criterion (see e.g. [DPZ92, Thm 3.3]) ensures that X is almost surely a continuous
function from [0, 1] to Rd. In this case C is given by the formula

C(u, v) = E
(
(X(u)−m(u))(X(v)−m(v))∗

)
and the convergence of the expansion (2.3) is uniform with probability one.

Remark 2.3 The solution of (1.2) may be viewed as the basis for an MCMC method
for sampling from a given Gaussian process. The key to exploiting this fact is the
identification of the operator L for a given Gaussian process. In the next section we
show that, for a variety of linear SDEs, L is a second order differential operator and
hence (1.2) is a stochastic partial differential equation. If C has a Hölder continuous
kernel C, it follows from (2.4) and the relation C = (−L)−1 that it suffices to find a
differential operator L such that C(u, v) is the Green’s function of −L.

3 Conditioned Linear SDEs

In this section we apply our sampling technique from section 2 to Gaussian measures
which are given as the distributions of a number of conditioned linear SDEs. We con-
dition on, in turn, a single known point (subsection 3.1), a single point with Gaussian
distribution (subsection 3.2) and finally a bridge between two points (subsection 3.3).

Throughout we consider the Rd-valued SDE

dX

du
(u) = AX(u) +B

dW

du
(u), ∀u ∈ [0, 1], (3.1)
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where A,B ∈ Rd×d and W is the standard d-dimensional Brownian motion. We
assume that the matrix BB∗ is invertible. We associate to (3.1) the second order dif-
ferential operator L formally given by

L = (∂u +A∗)(BB∗)−1(∂u −A). (3.2)

When equipped with homogeneous boundary conditions through its domain of def-
inition, we will denote the operator (3.2) by L. We will always consider boundary
conditions of the general form D0x(0) = 0 and D1x(1) = 0, where Di = Ai∂u + bi
are first-order differential operators.

Remark 3.1 We will repeatedly write Rd-valued SPDEs with inhomogeneous bound-
ary conditions of the type

∂tx(t, u) = Lx(t, u) + g(u) +
√

2 ∂tw(t, u) ∀(t, u) ∈ (0,∞)× [0, 1],
D0x(t, 0) = a, D1x(t, 1) = b ∀t ∈ (0,∞),

x(0, u) = x0(u) ∀u ∈ [0, 1]

(3.3)

where g : [0, 1] → Rd is a function, ∂tw is space-time white noise, and a, b ∈ Rd. We
call a process x a solution of this SPDE if it solves (2.2) with x(0) = x0 where L is L
equipped with the boundary conditionsD0f (0) = 0 andD1f (1) = 0, andm : [0, 1] →
Rd is the solution of the boundary value problem −Lm = g with boundary conditions
D0m(0) = a and D1m(1) = b.

To understand the connection between (3.3) and (2.2) note that, if w is a smooth
function, then the solutions of both equations coincide.

3.1 Fixed Left End-Point
Consider the problem of sampling paths of (3.1) subject only to the initial condition

X(0) = x− ∈ Rd. (3.4)

The solution of this SDE is a Gaussian process with mean

m(u) = E(X(u)) = euAx− (3.5)

and covariance function

C0(u, v) = euA
(∫ u∧v

0

e−rABB∗e−rA∗
dr

)
evA∗

(3.6)

(see e.g. [KS91, section 5.6] for reference). Let L denote the differential operator L
from (3.2) with the domain of definition

D(L) = {f ∈ H2([0, 1],Rd) | f (0) = 0,
d

du
f (1) = Af (1)}. (3.7)

Lemma 3.2 With L given by (3.2) and (3.7) the function C0 is the Green’s function
for −L. That is

LC0(u, v) = −δ(u− v)I

and
C0(0, v) = 0, ∂uC0(1, v) = AC0(1, v) ∀v ∈ (0, 1).
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Proof. From (3.6) it is clear that the left-hand boundary condition C0(0, v) = 0 is
satisfied for all v ∈ [0, 1]. It also follows that, for u 6= v, the kernel is differentiable
with derivative

∂uC0(u, v) =

{
AC0(u, v) +BB∗e−uA∗

evA∗
, for u < v, and

AC0(u, v) for u > v.
(3.8)

Thus the kernel C0 satisfies the boundary condition ∂uC0(1, v) = AC0(1, v) for all
v ∈ [0, 1).

Equation (3.8) shows

(BB∗)−1(∂u −A)C0(u, v) =

{
e−uA∗

evA∗
, for u < v, and

0 for u > v
(3.9)

and thus we get

LC0(u, v) = (∂u +A∗)(BB∗)−1(∂u −A)C0(u, v) = 0 ∀u 6= v.

Now let v ∈ (0, 1). Then we get

lim
u↑v

(BB∗)−1(∂u −A)C0(u, v) = I

and
lim
u↓v

(BB∗)−1(∂u −A)C0(u, v) = 0

This shows LC0(u, v) = −δ(u− v)I for all v ∈ (0, 1).

Now that we have identified the operator L = (−C)−1 we are in the situation
of Lemma 2.2 and can derive an SPDE to sample paths of (3.1), subject to the initial
condition (3.4). We formulate this result precisely in the following theorem.

Theorem 3.3 For every x0 ∈ H the Rd-valued SPDE

∂tx(t, u) = Lx(t, u) +
√

2 ∂tw(t, u) ∀(t, u) ∈ (0,∞)× (0, 1) (3.10a)

x(t, 0) = x−, ∂ux(t, 1) = Ax(t, 1) ∀t ∈ (0,∞) (3.10b)
x(0, u) = x0(u) ∀u ∈ [0, 1] (3.10c)

where ∂tw is space-time white noise has a unique mild solution. The SPDE is ergodic
and in equilibrium samples paths of the SDE (3.1) with initial condition X(0) = x−.

Proof. The solution of SDE (3.1) with initial condition (3.4) is a Gaussian process
where the mean m is given by (3.5). The mean m solves the boundary value prob-
lem Lm(u) = 0 for all u ∈ (0, 1), m(0) = x− and m′(1) = Am(1). From Remark 3.1
we find that x is a solution of the Hilbert space valued SDE (1.2) for this function m.

Lemma 3.2 shows thatL, given by (3.2) with the boundary conditions from (3.10b),
is the inverse of −C where C is the covariance operator of the distribution we want to
sample from (and with covariance function given by (3.6)). Lemma 2.2 then shows
that the SPDE (3.10) is ergodic and that its stationary distribution coincides with the
distribution of solutions of the SDE (3.1) with initial condition X(0) = x−.
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3.2 Gaussian Left End-Point
An argument similar to the one in section 3.1 deals with sampling paths of (3.1) where
X(0) is a Gaussian random variable distributed as

X(0) ∼ N (x−,Σ) (3.11)

with an invertible covariance matrix Σ ∈ Rd×d and independent of the Brownian mo-
tion W .

Theorem 3.4 For every x0 ∈ H the Rd-valued SPDE

∂tx(t, u) = Lx(t, u) +
√

2 ∂tw(t, u) ∀(t, u) ∈ (0,∞)× (0, 1) (3.12a)

∂ux(t, 0) = Ax(t, 0) +BB∗Σ−1(x− x−), ∂ux(t, 1) = Ax(t, 1) ∀t ∈ (0,∞)
(3.12b)

x(0, u) = x0(u) ∀u ∈ [0, 1] (3.12c)

where ∂tw is space-time white noise has a unique mild solution. The SPDE is er-
godic and in equilibrium samples paths of the SDE (3.1) with Gaussian initial condi-
tion (3.11).

Proof. The solution X of SDE (3.1) with initial condition (3.11) is a Gaussian process
with mean (3.5) and covariance function

C(u, v) = euAΣevA∗
+ C0(u, v), (3.13)

where C0 is the covariance function from (3.6) for the case X(0) = 0 (see Prob-
lem 6.1 in Section 5.6 of [KS91] for a reference). The mean m from (3.5) solves
the boundary value problem Lm(u) = 0 for all u ∈ (0, 1) with boundary conditions
m′(0) = Am(0) +BB∗Σ−1(m(0)− x−) and m′(1) = Am(1).

In order to identify the inverse of the covariance operator C we can use (3.8) to find

∂uC(u, v) =

{
AC(u, v) +BB∗e−uA∗

evA∗
, for u < v, and

AC(u, v) for u > v

and, since C(0, v) = Σ evA∗
, we get the boundary conditions

∂uC(0, v) = AC(0, v) +BB∗Σ−1C(0, v)

and
∂uC(1, v) = AC(1, v).

From (∂u −A)euAΣevA∗
= 0 we also get

LC(u, v) = LeuAΣevA∗
+ LC0(u, v) = 0

for all u 6= v and LC(u, v) = LC0(u, v) = −δ(u, v)I for all u, v ∈ (0, 1). Thus
C is again the Green’s function for −L and the claim follows from Remark 2.3 and
Lemma 2.2.

Remark 3.5 If A is negative-definite symmetric, then the solution X of SDE (3.1) has
a stationary distribution which is a centred Gaussian measure with covariance Σ =
− 1

2A
−1BB∗. Choosing this distribution in (3.11), the boundary condition (3.12b)

becomes

∂ux(t, 0) = −Ax(t, 0), ∂ux(t, 1) = Ax(t, 1) ∀t ∈ (0,∞).
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3.3 Bridge Sampling
In this section we apply our sampling method to sample from solutions of the linear
SDE (3.1) with fixed end-points, i.e. we sample from the distribution of X conditioned
on

X(0) = x−, X(1) = x+. (3.14)

The conditional distribution transpires to be absolutely continuous with respect to the
Brownian bridge measure satisfying (3.14).

Let m and C0 be the mean and covariance of the unconditioned solution X of
the SDE (3.1) with initial condition X(0) = x−. As we will show in Lemma 4.4
below, the solution conditioned on X(1) = x+ is again a Gaussian process. The mean
and covariance of the conditioned process can be found by conditioning the random
variable (X(u), X(v), X(1)) for u ≤ v ≤ 1 on the value of X(1). Since this is a
finite dimensional Gaussian random variable, mean and covariance of the conditional
distribution can be explicitly calculated. The result for the mean is

m̃(u) = m(u) + C0(u, 1)C0(1, 1)−1(x+ −m(1)) (3.15)

and for the covariance function we get

C̃(u, v) = C0(u, v)− C0(u, 1)C0(1, 1)−1C0(1, v). (3.16)

Theorem 3.6 For every x0 ∈ H the Rd-valued SPDE

∂tx = Lx+
√

2 ∂tw ∀(t, u) ∈ (0,∞)× (0, 1) (3.17a)

x(t, 0) = x−, x(t, 1) = x+ ∀t ∈ (0,∞) (3.17b)
x(0, u) = x0(u) ∀u ∈ [0, 1] (3.17c)

where ∂tw is white noise has a unique mild solution. The SPDE is ergodic and in
equilibrium samples paths of the SDE (3.1) subject to the bridge conditions (3.14).

Proof. The solution of the SDE (3.1) with boundary conditions (3.14) is a Gaussian
process where the mean m̃ is given by (3.15) and the covariance function C̃ is given
by (3.16). From formula (3.9) we know LC0(u, 1) = 0 and thus m̃ satisfies Lm̃ =
Lm = 0. Since m̃(0) = x− and m̃(t) = m(1)+C0(1, 1)C0(1, 1)−1(x+−m(1)) = x+,
the mean m̃ solves the boundary value problem Lm̃(u) = 0 for all u ∈ (0, 1) with
boundary conditions m̃(0) = x− and m̃(1) = x+.

It remains to show that C̃ is the Green’s function for the operator L with homoge-
neous Dirichlet boundary conditions: we have C̃(0, v) = 0,

C̃(1, v) = C0(1, v)− C0(1, 1)C0(1, 1)−1C0(1, v) = 0

and using LC0(u, 1) = 0 we find

LC̃(u, v) = LC0(u, v) = −δ(u− v)I.

This completes the proof.
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4 The Kalman-Bucy Filter/Smoother

Consider (3.1) with X replaced by the Rm × Rn-valued process (X,Y ) and A,B ∈
R(m+n)×(m+n) chosen so as to obtain the linear SDE

d

du

(
X(u)
Y (u)

)
=

(
A11 0
A21 0

) (
X(u)
Y (u)

)
+

(
B11 0
0 B22

)
d

du

(
Wx(u)
Wy(u)

)
. (4.1a)

We impose the conditions

X0 ∼ N (x−,Λ), Y0 = 0 (4.1b)

and try to sample from paths of X given paths of Y . We derive an SPDE whose invari-
ant measure is the conditional distribution of X given Y . Formally this SPDE is found
by writing the SPDE for sampling from the solution (X,Y ) of (4.1) and considering the
equation for the evolution of x, viewing y ≡ Y as known. This leads to the following
result.

Theorem 4.1 Given a path Y sampled from (4.1) consider the SPDE

∂tx =
(

(∂u +A∗11)(B11B
∗
11)−1(∂u −A11)

)
x

+A∗21(B22B
∗
22)−1

(dY
du

−A21x
)

+
√

2 ∂tw, (4.2a)

equipped with the inhomogeneous boundary conditions

∂ux(t, 0) = A11x(t, 0) +B11B
∗
11Λ

−1(x(t, 0)− x−),
∂ux(t, 1) = A11x(t, 1) (4.2b)

and initial condition
x(0, u) = x0(u) ∀u ∈ [0, 1]. (4.2c)

Then for every x0 ∈ H the SPDE has a unique mild solution and is ergodic. Its
stationary distribution coincides with the conditional distribution of X given Y for
X,Y solving (4.1).

The proof of this theorem is based on the following three lemmas concerning con-
ditioned Gaussian processes. After deriving these three lemmas we give the proof of
Theorem 4.1. The section finishes with a direct proof that the mean of the invariant
measure coincides with the standard algorithmic implementation of the Kalman-Bucy
filter/smoother through forward/backward sweeps (this fact is implicit in Theorem 4.1).

Lemma 4.2 LetH = H1⊕H2 be a separable Hilbert space with projectors Πi : H →
Hi. Let C : H → H be a positive definite, bounded, linear, self-adjoint operator and
denote Cij = ΠiCΠ∗

j . Then C11 − C12C−1
22 C21 is positive definite and if C11 is trace

class then the operator C12C
− 1

2
22 is Hilbert-Schmidt.

Proof. Since C is positive definite, one has

2|〈C21x, y〉| ≤ 〈x, C11x〉+ 〈y, C22y〉,
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for every (x, y) ∈ H. It follows that

|〈C21x, y〉|2 ≤ 〈x, C11x〉〈y, C22y〉, (4.3)

and so
|〈C21x, C−1/2

22 y〉|2 ≤ 〈x, C11x〉‖y‖2 (4.4)

for every y 6= 0 in the range of C1/2
22 . Equation (4.3) implies that C21x is orthogonal to

ker C22 for every x ∈ H1. Therefore the operator C−1/2
22 C21 can be defined on all ofH1

and thus is bounded. Taking y = C−1/2
22 C21x in (4.4) gives ‖C−1/2

22 C21x‖2 ≤ 〈x, C11x〉
and thus 〈x, (C11 − C12C−1

22 C21)x〉 ≥ 0 for every x ∈ H1. This implies that C−
1
2

22 C21

and C12C
− 1

2
22 are both Hilbert-Schmidt, and completes the proof.

Remark 4.3 Note that C being strictly positive definite is not sufficient to imply that
C11−C12C−1

22 C21 is also strictly positive definite. A counter-example can be constructed
by considering the Wiener measure on H = L2([0, 1]) with H1 being the linear space
spanned by the constant function 1.

Lemma 4.4 LetH = H1⊕H2 be a separable Hilbert space with projectors Πi : H →
Hi. Let (X1, X2) be anH-valued Gaussian random variable with meanm = (m1,m2)
and positive definite covariance operator C and define Cij = ΠiCΠ∗

j . Then the condi-
tional distribution of X1 given X2 is Gaussian with mean

m1|2 = m1 + C12C−1
22 (X2 −m2) (4.5)

and covariance operator
C1|2 = C11 − C12C−1

22 C21. (4.6)

Proof. Note that by Lemma 2.1 the operator C is trace class. Thus C11 and C22 are also
trace class. Let µ be the law of X2 and let H0 be the range of C1/2

22 equipped with the
inner product

〈x, y〉0 = 〈C−1/2
22 x,C

−1/2
22 y〉.

If we embed H0 ↪→ H2 via the trivial injection i(f ) = f , then we find i∗(f ) = C22f .
Since i ◦ i∗ = C22 is the covariance operator of µ, the space H0 is its reproducing
kernel Hilbert space. From Lemma 4.2 we know that C12C−1/2

22 is Hilbert-Schmidt
from H2 to H1 and hence bounded. Thus we can define

A = C12C−1/2
22 C−1/2

22 = C12C−1
22

as a bounded operator from H0 to H1.
Let (φn)n be an orthonormal basis ofH2. Then ψn = C

1/2
22 φn defines an orthonor-

mal basis on H0 and we get∑
n∈N

‖Aψn‖2H1
=

∑
n∈N

‖C12C−1
22 C1/2

22 φn‖2H1
=

∑
n∈N

‖C12C−1/2
22 φn‖2H1

<∞,

where the last inequality comes from Lemma 4.2. This shows that the operator A is
Hilbert-Schmidt on the reproducing kernel Hilbert spaceH0. Theorem II.3.3 of [DF91]
shows that A can be extended in a measurable way to a subset of H2 which has full
measure, so that (4.5) is well-defined.
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Now consider the process Y defined by(
Y1

Y2

)
=

(
IH1 −A
0H2 IH2

) (
X1

X2

)
.

This process is also Gaussian, but with mean

mY =
(
IH1 −A
0H2 IH2

) (
m1

m2

)
=

(
m1 −Am2

m2

)
and covariance operator

CY =
(
IH1 −A
0H2 IH2

) (
C11 C12

C21 C22

) (
IH1 0H2

−A∗ IH2

)
=

(
C11 − C12C−1

22 C21 0
0 C22

)
.

This shows that Y1 = X1 − C12C−1
22 X2 and Y2 = X2 are uncorrelated and thus inde-

pendent. So we get

E(X1 | X2) = E(X1 − C12C−1
22 X2 | X2) + E(C12C−1

22 X2 | X2)
= E(X1 − C12C−1

22 X2) + C12C−1
22 X2

= m1 − C12C−1
22 m2 + C12C−1

22 X2.

This proves (4.5) and a similar calculation gives equality (4.6).

Remark 4.5 If we define as above L = (−C)−1 and formally define Lij = ΠiLΠ∗
j

(note that without additional information on the domain of L these operators may not
be densely defined), then a simple formal calculation shows that m1|2 and C1|2 are
expected to be given by

m1|2 = m1 − L−1
11 L12(X2 −m2), C1|2 = −L−1

11 . (4.7)

We now justify these relations in a particular situation which is adapted to the case that
will be considered in the remaining part of this section.

Lemma 4.6 Consider the setup of Lemma 4.4 and Remark 4.5 and assume furthermore
that the following properties are satisfied:

a. The operator L can be extended to a closed operator L̃ on Π1D(L)⊕Π2D(L).
b. Define the operators Lij = ΠiL̃Π∗

j . Then, the operator L11 is self-adjoint and
one has kerL11 = {0}.

c. The operator −L−1
11 L12 can be extended to a bounded operator from H2 into

H1.
Then C12C−1

22 can be extended to a bounded operator from H2 into H1 and one has
C12C−1

22 = −L−1
11 L12. Furthermore, C21 maps H1 into the range of C22 and one has

L−1
11 x = (C11 − C12C−1

22 C21)x,

for every x ∈ H1.

Proof. We first show that C12C−1
22 = −L−1

11 L12. By property a. and the definition of L,
we have the equality

L̃Π∗
1Π1Cx+ L̃Π∗

2Π2Cx = −x (4.8)
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for every x ∈ H, and thus L11C12x = −L12C22x for every x ∈ H2. It follows
immediately that L11C12C−1

22 x = −L12x for every x ∈ R(C22). Since R(C22) is dense
in H2, the statement follows from assumptions b. and c.

Let us now turn to the second equality. By property a. the operator C21 maps H1

into the domain of L12 so that

x = x− L12C21x+ L12C21x = L11C11x+ L12C21x, (4.9)

for every x ∈ H1 (the second equality follows from an argument similar to the one
that yields (4.8)). Since the operator C−1

22 is self-adjoint, we know from [Yos95, p. 195]
that (C12C−1

22 )∗ = C−1
22 C21. Since the left hand side operator is densely defined and

bounded, its adjoint is defined on all of H1, so that C21 maps H1 into the range of C22.
It follows from (4.9) that

x = L11C11x+ L12C22C−1
22 C21x,

for every x ∈ H1. Using (4.8), this yields x = L11C11x − L11C12C−1
22 C21x, so that

L−1
11 is an extension of C11−C12C−1

22 C21. Since both of these operators are self-adjoint,
they must agree.

Corollary 4.7 Let (X,Y ) be Gaussian with covariance C and mean m on a separable
Hilbert space H = H1 ⊕H2. Assume furthermore that C satisfies the assumptions of
Lemmas 4.4 and 4.6. Then, the conditional law of X given Y is given by the invariant
measure of the ergodic SPDE

dx

dt
= L11x− L11Π1m+ L12(Y −Π2m) +

√
2
dw

dt
, (4.10)

where w is a cylindrical Wiener process on H1 and the operators Lij are defined as
in Lemma 4.6. SPDE (4.10) is again interpreted in the mild sense (2.2).

Proof. Note that L−1
11 L12 can be extended to a bounded operator by assumption and

the mild interpretation of (4.10) is

xt = M + eL11t(x0 −M ) +
√

2
∫ t

0

eL11(t−s) dw(s), (4.11)

with M = Π1m− L−1
11 L12(Y − Π2m). The result follows by combining Lemma 4.4

and Lemma 4.6 with Lemma 2.2.

These abstract results enable us to prove the main result of this section.

Proof of Theorem 4.1. Consider a solution (X,Y ) to the SDE (4.1). Introducing the
shorthand notations

Σ1 = (B11B
∗
11)−1, Σ2 = (B22B

∗
22)−1,

it follows by the techniques used in the proof of Theorem 3.4 that the operator L cor-
responding to its covariance is formally given by(

L11 L12

L21 L22

)
:=

(
∂u +A∗11 A∗21

0 ∂u

) (
B11B

∗
11 0

0 B22B
∗
22

)−1 (
∂u −A11 0
−A21 ∂u

)
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=
(

(∂u +A∗11)Σ1(∂u −A11)−A∗21Σ2A21 A∗21Σ2∂u

−∂uΣ2A21 ∂uΣ2∂u

)
.

In order to identify its domain, we consider (3.12b) with

Σ =
(

Λ 0
0 Γ

)
and we take the limit Γ → 0. This leads to the boundary conditions

∂ux(0) = A11x(0) + (ΛΣ1)−1(x(0)− x−), ∂ux(1) = A11x(1),
y(0) = 0, ∂uy(1) = A21x(1).

(4.12a)

The domain of L is thusH2([0, 1],Rm×Rn), equipped with the homogeneous version
of these boundary conditions.

We now check that the conditions of Lemma 4.6 hold. Condition a. is readily
verified, the operator L̃ being equipped with the boundary conditions

∂ux(0) = A11x(0) + (ΛΣ1)−1x(0), ∂ux(1) = A11x(1),
y(0) = 0, Π∂uy(1) = 0,

(4.12b)

where Π is the projection on the orthogonal complement of the range of A21. Note that
the operator L̃ is closed, but no longer self-adjoint (unless A21 = 0). The operator L11

is therefore given by

L11 = (∂u +A∗11)Σ1(∂u −A11)−A∗21Σ2A21,

equipped with the boundary condition

∂ux(0) = A11x(0) + (ΛΣ1)−1x(0), ∂ux(1) = A11x(1).

It is clear that this operator is self-adjoint. The fact that its spectrum is bounded away
from 0 follows from the fact that the form domain of L contains Π∗

1Π1D(L) and that
there is a c > 0 with 〈a,La〉 ≤ −c‖a‖2 for all a ∈ D(L). Thus condition b. holds.

The operator L12 is given by the first-order differential operator A∗21Σ2∂u whose
domain is given by functions with square-integrable second derivative that vanish at
0. Since the kernel of L−1

11 has a square-integrable derivative, it is easy to check that
L−1

11 L12 extends to a bounded operator on H, so that condition c. is also verified.
We can therefore apply Lemma 4.6 and Lemma 2.2. The formulation of the equa-

tion with inhomogeneous boundary conditions is an immediate consequence of Re-
mark 3.1: a short calculation to remove the inhomogeneity in the boundary condi-
tions (4.2b) and change the inhomogeneity in the PDE (4.2a) shows that (4.2) can be
written in the form (4.10) or (4.11) with the desired value for M , the conditional mean.
Since L11 is indeed the conditional covariance operator, the proof is complete.

Remark 4.8 For Y solving (4.1) the derivative dY
du only exists in a distributional sense

(it is in the Sobolev space H−1/2−ε for every ε > 0). But the definition (2.2) of a
mild solution which we use here applies the inverse of the second order differential
operator L11 to dY

du , resulting in an element of H3/2−ε in the solution.

Remark 4.9 Denote by x(t, u) a solution of the SPDE (4.2) and write the mean as
x̄(t, u) = Ex(t, u). Then, as t → ∞, x̄(t, u) converges to its limit x̃(u) strongly in
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L2([0, 1],Rm) and x̃(u) must coincide with the Kalman-Bucy filter/smoother. This
follows from the fact that x̃ equals E(X |Y ). It is instructive to demonstrate this result
directly and so we do so.

The mean x̃(u) of the invariant measure of (4.2) satisfies the linear two point bound-
ary value problem

(
d

du
+A∗11)(B11B

∗
11)−1(

d

du
−A11)x̃(u)

+A∗21(B22B
∗
22)−1

(dY
du

−A21x̃(u)
)

= 0 ∀u ∈ (0, 1),
(4.13a)

d

du
x̃(0) = A11x̃(0) +B11B

∗
11Λ

−1(x̃(0)− x−), (4.13b)

d

du
x̃(1) = A11x̃(1). (4.13c)

The standard implementation of the Kalman filter is to calculate the conditional
expectation X̂(u) = E(X(u) | Y (v), 0 ≤ v ≤ u) by solving the initial value problem

d

du
S(u) = A11S(u) + S(u)A∗11 − S(u)A∗21(B22B

∗
22)−1A21S(u) +B11B

∗
11

S(0) = Λ (4.14)

and

d

du
X̂(u) = (A11 − S(u)A∗21(B22B

∗
22)−1A21)X̂ + S(u)A∗21(B22B

∗
22)−1 dY

du

X̂(0) = x−. (4.15)

The Kalman smoother X̃ , designed to find X̃(u) = E(X(u) | Y (v), 0 ≤ v ≤ 1), is
then given by the backward sweep

d

du
X̃(u) = A11X̃(u) +B11B

∗
11S(u)−1(X̃(u)− X̂(u)) ∀u ∈ (0, 1)

X̃(1) = X̂(1). (4.16)

See [Øks98, section 6.3 and exercise 6.6] for a reference. We wish to demonstrate that
x̃(u) = X̃(u).

Equation (4.16) evaluated for u = 1 gives equation (4.13c). When evaluating (4.16)
at u = 0 we can use the boundary conditions from (4.14) and (4.15) to get equa-
tion (4.13b). Thus it remains to show that X̃(u) satisfies equation (4.13a). We proceed
as follows: equation (4.16) gives

(
d

du
+A∗11)(B11B

∗
11)−1(

d

du
−A11)X̃

= (
d

du
+A∗11)(B11B

∗
11)−1B11B

∗
11S

−1(X̃ − X̂)

= (
d

du
+A∗11)S−1(X̃ − X̂)

and so

(
d

du
+A∗11)(B11B

∗
11)−1(

d

du
−A11)X̃

=
(
A∗11S

−1 +
d

du
S−1

)
(X̃ − X̂) + S−1 d

du
(X̃ − X̂).

(4.17)
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We have
d

du
S−1 = −S−1 dS

du
S−1

and hence, using equation (4.14), we get

d

du
S−1 = −S−1A11 −A∗11S

−1 +A∗21(B22B
∗
22)−1A21 − S−1B11B

∗
11S

−1. (4.18)

Subtracting (4.15) from (4.16) leads to

S−1 d

du
(X̃ − X̂) = S−1A11(X̃ − X̂) + S−1B11B

∗
11S

−1(X̃ − X̂)

−A∗21(B22B
∗
22)−1

(dY
du

−A21X̂
)
. (4.19)

By substituting (4.18), (4.19) into (4.17) and collecting all the terms we find

(
d

du
+A∗11)(B11B

∗
11)−1(

d

du
−A11)X̃ = −A∗21(B22B

∗
22)−1

(dY
du

−A21X̃
)

which is equation (4.13a).
We note in passing that equations (4.14) to (4.16) constitute a factorisation of the

two-point boundary value problem (4.13) reminiscent of a continuous LU-factorisation
of L11.

5 Numerical Approximation of the SPDEs and Sampling

A primary objective when introducing SPDEs in this paper, and in the nonlinear com-
panion [HSV], is to construct MCMC methods to sample conditioned diffusions. In
this section we illustrate briefly how this can be implemented.

If we discretise the SDE (1.2) in time by the θ-method, we obtain the following
implicitly defined mapping from (xk, ξk) to x?:

x? − xk

∆t
=

(
θLx∗ + (1− θ)Lxk

)
− Lm+

√
2

∆t
ξk,

where ξk is a sequence of i.i.d Gaussian random variables in H with covariance oper-
ator I (i.e. white noise in in H). The Markov chain implied by the map is well-defined
onH for every θ ∈ [ 1

2 , 1]. This Markov chain can be used as a proposal distribution for
an MCMC method, using the Metropolis-Hastings criterion to accept or reject steps.
To make a practical algorithm it is necessary to discretise in the Hilbert space H, as
well as in time t. This idea extends to nonlinear problems.

Straightforward calculation using the Karhunen-Loève expansion, similar to the
calculations following Lemma 2.2, shows that the invariant measure of the SPDE (1.2)
is preserved if the SPDE is replaced by

dx

dt
= −x+m+

√
2C dw

dt
. (5.1)

Such pre-conditioning of Langevin equations can be beneficial algorithmically because
it equalises convergence rates in different modes. This in turn allows for optimisation
of the time-step choice for a Metropolis-Hastings algorithm across all modes simulta-
neously. We illustrate this issue for the linear Gaussian processes of interest here.
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Equation (5.1) can be discretised in time by the θ-method to obtain the following
implicitly defined mapping from (xk, ξk) into x?:

x? − xk

∆t
= −

(
θx? + (1− θ)xk

)
+m+

√
2

∆t
ξk.

Now ξk is a sequence of i.i.d. Gaussian random variables in H with covariance oper-
ator C. Again, this leads to a well-defined Markov chain on H for every θ ∈ [ 1

2 , 1].
Furthermore the invariant measure is C/(1 + (θ − 1

2 )∆t). Thus the choice θ = 1
2 has a

particular advantage: it preserves the exact invariant measure, for all ∆t > 0. (These
observations can be justified by using the Karhunen-Loève expansion). Note that(

1 + θ∆t
)
x? =

(
1− (1− θ)∆t

)
xk +

√
2∆tξk.

When θ = 1
2 , choosing ∆t = 2 generates independent random variables which there-

fore sample the invariant measure independently. This illustrates in a simple Gaussian
setting the fact that it is possible to choose a globally optimal time-step for the MCMC
method. To make a practical algorithm it is necessary to discretise in the Hilbert space
H, as well as in time t. The ideas provide useful insight into nonlinear problems.

6 Conclusions

In this text we derived and exploited a method to construct linear SPDEs which have
a prescribed Gaussian measure as their stationary distribution. The fundamental rela-
tion between the diffusion operator L in the SPDE and the covariance operator C of
the Gaussian measure is L = (−C)−1 and, using this, we showed that the kernel of
the covariance operator (the covariance function) is the Green’s functions for L. We
illustrated this technique by constructing SPDEs which sample from the distributions
of linear SDEs conditioned on several different types of observations.

These abstract Gaussian results were used to produce some interesting results about
the structure of the Kalman-Bucy filter/smoother. Connections were also made be-
tween discretisations of the resulting SPDEs and MCMC methods for the Gaussian
processes of interest.

In the companion article [HSV] we build on the present analysis to extend this
technique beyond the linear case. There we consider conditioned SDEs where the drift
is a gradient (or more generally a linear function plus a gradient). The resulting SPDEs
can be derived from the SPDEs in the present text by the addition of an extra drift term
to account for the additional gradient. The stationary distributions of the new nonlinear
SPDEs are identified by calculating their Radon-Nikodym derivative with respect to
the corresponding stationary distributions of the linear equations as identified in the
present article; this is achieved via the Girsanov transformation.
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