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Abstract

We derive a large deviation principle which describes the behaviour of a diffusion process

with additive noise under the influence of a strong drift. Our main result is a large deviation

theorem for the distribution of the end-point of a one-dimensional diffusion with drift ϑb

where b is a drift function and ϑ a real number, when ϑ converges to ∞. It transpires that

the problem is governed by a rate function which consists of two parts: one contribution

comes from the Freidlin-Wentzell theorem whereas a second term reflects the cost for a

Brownian motion to stay near a equilibrium point of the drift over long periods of time.

1 Introduction

The Freidlin-Wentzell theorem and its generalisations are well-known large deviation results.
This theorem provides a large deviation principle (LDP) on the path space for solutions of the
SDE dX = b(X)dt +

√
ε dB when ε converges to 0. The related, but different, problem of

the large deviation behaviour of a diffusion process under the influence of a strong drift is less
studied. In this article we derive an LDP for the behaviour of the endpoint Xϑ

t of solutions of
the R-valued stochastic differential equation

dXϑ
s = ϑb(Xϑ

s )ds + dBs for all s ∈ [0, t]

Xϑ
0 = z ∈ R

(1.1)

when the parameter ϑ converges to infinity.
For comparison with the Freidlin-Wentzell result one can convert the case of strong drift into

the case of weak noise with the help of the following scaling argument: Define X̃ϑ
s = Xϑ

s/ϑ and

B̃s =
√

ϑBs/ϑ for all s ∈ [0, ϑt]. Then the process X̃ϑ is a solution of the SDE

dX̃ϑ
s = b(X̃ϑ

s )ds +
1√
ϑ

dBs for all s ∈ [0, ϑt]

X̃ϑ
0 = z

and we have
P (Xϑ

t ∈ A) = P
(

X̃ϑ ∈ {ω | ωϑt ∈ A}
)

.

The rescaled problem looks more similar to the situation from the Freidlin-Wentzell theory, but
now the event in question depends on the parameter ϑ. Thus the Freidlin-Wentzell theorem still
does not apply easily. Therefore a more sophisticated proof will be required.

The text is structured as follows: In section 2 we state our main result and two corollaries.
Since the proof of the theorem is quite long we give an overview of the proof of our theorem in
section 3. The proof itself is spread over sections 4, 5 and 6.

The result presented in this text was originally derived as part of my PhD-thesis [Vos04].
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2 Results

Recall that a family (Xϑ)ϑ>0 of random variables with values in some topological space X
satisfies the LDP with rate function I : X → [0,∞], if it satisfies the estimates

lim inf
ϑ→∞

1

ϑ
log P (Xϑ ∈ O) ≥ − inf

x∈O
I(x)

for every open set O ⊆ X and

lim sup
ϑ→∞

1

ϑ
log P (Xϑ ∈ A) ≤ − inf

x∈A
I(x)

for every closed set A ⊆ X . The family (Xϑ)ϑ>0 satisfies the weak LDP if the upper bound
holds for every compact (instead of closed) set A ⊆ X . For details about the theory of large
deviations we refer to [DZ98].

Our main result is the following theorem together with the corollaries 2 and 4.

Theorem 1 Let b : R → R be a globally Lipschitz C2-function with lim inf |x|→∞ |b(x)| > 0.
Assume that there is an m ∈ R with b(x) = 0 if and only if x = m and with b′(m) 6= 0.
Furthermore let z ∈ R, t > 0 and for every ϑ > 0 let Xϑ be the solution of the SDE

dXϑ
s = ϑb(Xϑ

s )ds + dBs for s ∈ [0, t], and

Xϑ
0 = z.

(2.1)

Then the family (Xϑ
t )ϑ>0 satisfies the weak LDP on R with rate function

Jt(x) = V m
z (Φ) − Φ(z) + t(Φ′′(m))− + V x

m(Φ) + Φ(x) (2.2)

for all x ∈ R, where Φ satisfies b = −Φ′, V b
a (Φ) is the total variation of Φ between a and b, and

(Φ′′(m))− denotes the negative part of Φ′′(m), i.e. (Φ′′(m))− = 0 if Φ′′(m) ≥ 0 and (Φ′′(m))− =
|Φ′′(m)| if Φ′′(m) < 0.

Note that the condition b = −Φ′ defines Φ only up to a constant, but the rate function Jt

does not depend on the choice of this constant.
In the theorem V b

a (Φ) can be interpreted as the “cost” for the process of going from a to b.
Using b = −Φ′ we find

V b
a (Φ) =

∣

∣

∫ b

a

|b(x)| dx
∣

∣

for any a, b ∈ R. The term (Φ′′(m))− can be interpreted as the “cost” of staying near m for a
unit of time. This term only occurs, if the equilibrium point m is unstable.

Given the sign of b′(m) the rate function from the theorem can be simplified because the drift b
has only one zero. The following corollary describes the case of b′(m) < 0, which corresponds
to attracting drift. In this case the weak LDP from the theorem can be strengthend to the full
LDP.

Corollary 2 Under the conditions of theorem 1 with b′(m) < 0 the following claims hold.
a) For every t > 0 the family (Xϑ

t )ϑ>0 satisfies the weak LDP on R with rate function

Jt(x) = 2
(

Φ(x) − Φ(m)
)

for all x ∈ R. (2.3)

b) If b is monotonically decreasing, then the family (Xϑ
t )ϑ>0 satisfies the full LDP with rate

function Jt.

In the situation of corollary 2 the rate function is independent of the interval length t and
of the initial point z. This makes sense, because for strong drift we would expect the process
to reach the equilibrium very quickly. Because we have lim inf |x|→∞ |b(x)| > 0 the potential Φ
converges to +∞ for |x| → ∞ and Jt is a good rate function. In fact the rate function coincides
with the rate function of the LDP for the stationary distribution as given in theorem 3 (This is
an easy application of the Laplace principle, see e.g. [Vos04] for details).

2



Theorem 3 Let Φ: R
d → R be differentiable and such that exp(−2Φ(x)) is a probability density

on R
d. Let Φ be bounded from below with Φ∗ = inf{Φ(x) | x ∈ R

d } > −∞. Finally let
b = − gradΦ be Lipschitz continuous.

Then for every ϑ ≥ 1 the stochastic differential equation

dXϑ = ϑ b(Xϑ)dt + dW

has a stationary distribution µϑ and for every measurable set A ⊆ R
d we have

lim
ϑ→∞

1

ϑ
log µϑ(A) = − ess infx∈A 2

(

Φ(x) − Φ∗
)

.

Proof. (of corollary 2) a) Since we assume that m is the only zero of the drift b, for b′(m) < 0 the
point m is the minimum of Φ. In this case we have V m

z (Φ) = Φ(z)−Φ(m), V x
m(Φ) = Φ(x)−Φ(m)

and Φ′′(m) > 0, so the rate function simplifies to the expression given in formula (2.3).
b) To strengthen the weak LDP to the full LDP we have to check exponential tightness, i.e.

we have to show that for every c > 0 there is an a > 0 with

lim sup
ϑ→∞

1

ϑ
log P

(

|Xϑ
t − m| > a

)

< −c

(for reference see lemma 1.2.18 from [DZ98]). We use a comparison argument to obtain this
estimate.

Using the assumption lim inf |x|→∞ |b(x)| > 0 we find that exp(−2ϑΦ) is integrable and

SDE (2.1) has a stationary distribution with density proportional to exp(−2ϑΦ). Let Xϑ be a
solution of (2.1) with start in z and Y ϑ be a stationary solution, both with respect to the same
Brownian motion. Then we get the deterministic differential equation

d

dt
(Xϑ

t − Y ϑ
t ) = ϑ

(

b(Xϑ
t ) − b(Y ϑ

t )
)

for the difference between the processes. First assume Xϑ
0 − Y ϑ

0 ≥ 0. Because for Xϑ
t − Y ϑ

t = 0
the right hand side vanishes, the process Xϑ

t − Y ϑ
t can never change its sign and stays positive.

Since b is decreasing we have b(Xϑ
t ) − b(Y ϑ

t ) ≤ 0 and we can conclude

0 ≤ Xϑ
t − Y ϑ

t ≤ Xϑ
0 − Y ϑ

0 .

For the case Xϑ
0 − Y ϑ

0 ≤ 0 we can interchange the roles of X and Y to obtain the estimate

0 ≤ Y ϑ
t − Xϑ

t ≤ Y ϑ
0 − Xϑ

0 .

Combining these two cases gives

|Y ϑ
t − Xϑ

t | ≤ |Y ϑ
0 − Xϑ

0 | = |Y ϑ
0 − z|.

Using

|Xϑ
t − m| ≤ |Xϑ

t − Y ϑ
t | + |Y ϑ

t − m|
≤ |z − Y ϑ

0 | + |Y ϑ
t − m|

≤ |z − m| + |Y ϑ
0 − m| + |Y ϑ

t − m|

we can conclude

P
(

|Xϑ
t − m| > a

)

≤ P
(

|Y ϑ
0 − m| + |Y ϑ

t − m| > a − |z − m|
)

≤ P
(

|Y ϑ
0 − m| >

a − |z − m|
2

)

+ P
(

|Y ϑ
t − m| >

a − |z − m|
2

)

= 2P
(

|Y ϑ
0 − m| >

a − |z − m|
2

)

.
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Now let c > 0. Then using theorem 3 we can find an a > 0 with

lim
ϑ→∞

1

ϑ
log P

(

|Y ϑ
0 − m| >

a − |z − m|
2

)

≤ −c

and using the above estimate we get

lim
ϑ→∞

1

ϑ
log P

(

|Xϑ
t − m| > a

)

≤ −c.

Since this is the required exponential tightness condition, the proof is complete.

The case of repelling drift, i.e. of b′(m) > 0, is described in the following corollary.

Corollary 4 Under the conditions of theorem 1 with b′(m) > 0, for every t > 0 the family
(Xϑ

t )ϑ>0 satisfies the weak LDP on R with constant rate function

Jt(x) = 2
(

Φ(m) − Φ(z)
)

− tΦ′′(m). (2.4)

Proof. (of corollary 4) In the case b′(m) > 0 the point m is the maximum of Φ and because of
V m

z (Φ) = Φ(m) − Φ(z), V x
m(Φ) = Φ(m) − Φ(x) and Φ′′(m) < 0 we get

Jt(x) =
(

Φ(m) − Φ(z)
)

− Φ(z) − tΦ′′(m) +
(

Φ(m) − Φ(x)
)

+ Φ(x)

= 2
(

Φ(m) − Φ(z)
)

− tΦ′′(m)

for all x ∈ R.

The corollary shows that in the case of repelling drift the rate function does not depend on x.
In particular it is not a good rate function. Here it is impossible to strengthen the weak LDP
to the full LDP because we have

lim
ϑ→∞

1

ϑ
log P (Xϑ

t ∈ R) = 0 6= 2
(

Φ(m) − Φ(z)
)

− tΦ′′(m).

3 Overall Structure of the Proof

The remaining part of this text contains the proof of theorem 1. Since the proof is quite long,
we use this section to give an overview of the proof. All the technical details are contained in
sections 4, 5, and 6.

Let Xϑ be a solution of the SDE (1.1). From the Girsanov formula we know the density of
the distribution of Xϑ

t w.r.t. the Wiener measure W: assuming Xϑ
0 = 0 and b = −∇Φ we get

P (Xϑ
t ∈ A) =

∫

1A(ωt) exp
(

ϑF (ω) − ϑ2G(ω)
)

dW(ω) (3.1)

where

F (ω) = Φ(ω0) − Φ(ωt) +
1

2

∫ t

0

Φ′′(ωs) ds and

G(ω) =
1

2

∫ t

0

b2(ωs) ds.

For large values of ϑ the ϑ2G term dominates over the ϑF term and we show that the only
paths which contribute for the large deviations behaviour of Xϑ

t are those, which correspond to
very small values of G. These paths run quickly to the equilibrium point m of the drift b, stay
close to this point for most of the time, and shortly before time t move quickly into the set A.
Assuming for the moment A = B(a, δ) with a small δ > 0, we get

P (Xϑ
t ≈ a) ≈ exp

(

ϑ(Φ(0) − Φ(a) +
t

2
Φ′′(m))

)

∫

1{ωt≈a} exp
(

−ϑ2G(ω)
)

dW(ω)
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and thus

lim
ϑ→∞

1

ϑ
log P (Xϑ

t ≈ a)

≈ Φ(0) − Φ(a) +
t

2
Φ′′(m) + lim

ϑ→∞

1

ϑ
log

∫

1{ωt≈a} exp
(

−ϑ2

2

∫ t

0

b2(ωs) ds
)

dW(ω).

(3.2)

Lemma 26 in section 6 resolves the technical details which are hidden in the ≈-signs here and
also gives the required upper and lower limits for (3.2).

To evaluate the integral on the right hand side of (3.2) we use the following result about upper
and lower limits in Tauberian theorems of exponential type. The theorem is proved in [Vos04].
It is a generalisation of de Bruijn’s theorem (see theorem 4.12.9 in [BGT87]).

Theorem 5 Let X ≥ 0 be a random variable and A an event with P (A) > 0. Define the upper
and lower limits

r̄ = lim sup
λ→∞

1√
λ

log E(e−λX1A) and r
¯

= lim inf
λ→∞

1√
λ

log E(e−λX1A)

as well as
s̄ = lim sup

ε→0
ε logP (X ≤ ε, A) and s

¯
= lim inf

ε→0
ε log P (X ≤ ε, A).

Then −r̄2/4 = s̄ and for the lower limits we have the sharp estimates −r
¯

2 ≤ s
¯
≤ −r

¯
2/4.

Using theorem 5 we can reduce the original problem to the calculation of exponential rates
like

lim
ε↓0

ε log P
(

∫ t

0

b2(Bs) ds ≤ ε, Bt ≈ a
)

.

In section 4 we examine the situation that during a short time interval the process runs from 0
to m or from m to a respectively while still keeping

∫

b2(ωs) ds small. This will be used for the
initial and the final section of the path. As indicated in section 1 we can rescale the problem in
these domains and apply the known results for weak noise. The problem here is to identify the
infimum of the rate function.

In section 5 we examine the situation that
∫

b2(ωs) ds is small over a long interval of time.
This will be used to study the middle section of the path. We will use theorem 5 again to deduce
the probability for this case from the known Laplace transform of

∫ t

0
B2

s ds.
Finally, in section 6, we fit these two results together to complete the proof of theorem 1.

This part of the proof is modelled after the proof of proposition 6 which we give below. We want
to use X1, X2, X3 =

∫

b2(Bs) ds where the integral is taken over the initial, middle, and final
section of the path respectively. Since these random variables are not independent, we cannot
directly apply proposition 6 but have to use an enhanced version of the proof. This is provided
in lemma 27.

We give the full prove of proposition 6 here, because we will need the proposition itself in
the proof of lemma 23, and also because we hope that reading the proof of proposition 6 might
make it easier to follow the proof of lemma 27 below.

Proposition 6 Let X1, . . . , Xn be independent, positive random variables with

lim inf
ε↓0

ε log P
(

Xk ≤ ε
)

= −b2
k and lim sup

ε↓0
ε logP

(

Xk ≤ ε
)

= −c2
k

where bk, ck ≥ 0 for k = 1, . . . , n. Then we have

lim inf
ε↓0

ε log P
(

X1 + · · · + Xn ≤ ε
)

≥ −(b1 + · · · + bn)2

and
lim sup

ε↓0
ε log P

(

X1 + · · · + Xn ≤ ε
)

≤ −(c1 + · · · + cn)2.
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Proof. Let δ > 0. Since the simplex

Sε
n =

{

(ε1, . . . , εn) ∈ R
n
≥0

∣

∣ ε1 + · · · + εn ≤ ε
}

is compact and covered by the open sets
{

(ε1, . . . , εn) ∈ R
n

∣

∣ εj < αjε for j = 1, . . . , n
}

for
α1, . . . , αn > 0 with α1 + · · · + αn = 1 + δ, we can find a finite set

Dδ
n ⊆

{

α ∈ R
n
>0

∣

∣ α1 + · · · + αn = 1 + δ
}

(3.3)

with
Sε

n ⊆
⋃

α∈Dδ
n

{

(ε1, . . . , εn) ∈ R
n
≥0

∣

∣ εj ≤ αjε for j = 1, . . . , n
}

for all ε > 0. This gives

P
(

X1 + · · · + Xn ≤ ε
)

≤
∑

α∈Dδ
n

P
(

X1 ≤ α1ε, . . . , Xk ≤ αkε
)

.

and for the individual terms in the sum we can use the relation

lim sup
ε↓0

ε log P
(

X1 ≤ α1ε, . . . , Xk ≤ αkε
)

= lim sup
ε↓0

ε log
n

∏

k=1

P
(

Xk ≤ αkε
)

= −
n

∑

k=1

c2
k

αk
.

Let a =
∑n

k=1 αk, pk = αk/a, and dk = ck/pk for k = 1, . . . , n. Applying Jensen’s inequality
to the random variable which takes value dk with probability pk gives

c2
1

α1
+ · · · + c2

n

αn
≥ (c1 + · · · + cn)2

∑n
k=1 αk

(3.4)

where equality holds if and only if there is a λ ∈ R with λαk = ck for k = 1, . . . , n. Thus we get

lim sup
ε↓0

ε log P
(

X1 ≤ α1ε, . . . , Xn ≤ αnε
)

≤ − (c1 + · · · + cn)2

1 + δ

for every α ∈ Dδ
n. Using lemma 1.2.15 of [DZ98] we can conclude

lim sup
ε↓0

ε log P
(

X1 + · · · + Xn ≤ ε
)

≤ max
α∈Dδ

n

lim sup
ε↓0

ε logP
(

X1 ≤ α1ε, . . . , Xn ≤ αnε
)

≤ − (c1 + · · · + cn)2

1 + δ

for every δ > 0 and thus

lim sup
ε↓0

ε log P
(

X1 + · · · + Xn ≤ ε
)

≤ −(c1 + · · · + cn)2.

From (3.4) we know that we should choose αk proportional to bk in order to get the optimal
lower bound. This leads to the estimate

lim inf
ε↓0

ε logP
(

X1 + · · · + Xn ≤ ε
)

≥ lim inf
ε↓0

ε logP
(

Xk ≤ bk

b1 + · · · + bn
ε, k = 1, . . . , n

)

= lim inf
ε↓0

ε log

n
∏

k=1

P
(

Xk ≤ bk

b1 + · · · + bn
ε
)

≥
n

∑

k=1

b1 + · · · + bn

bk
lim inf

ε↓0
ε log P

(

Xk ≤ ε
)

= −
n

∑

k=1

b1 + · · · + bn

bk
b2
k

= −(b1 + · · · + bn)2
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which completes the proof.

4 Reaching the Final Point

The results of this section help to estimate the probability that the path travels quickly between
the equilibrium point of the drift and the final resp. initial point. Here Schilder’s theorem (see
theorem 5.2.1 in [DZ98]) can be applied and we will reduce the evaluation of the rate function
to a variational problem.

The main result of this section is the following proposition which describes the large deviation
behaviour of the event

1

2

∫ tε

0

b2(Bs) ds ≤ ε

when ε ↓ 0, where the final point Btε stays in a fixed, compact set. Evaluating the rate for fixed
t > 0 is difficult, but it transpires that there is an explicit representation for the limit of the rate
as t tends to infinity.

Proposition 7 Let Pz be the distribution of a Brownian motion with start in z and B be the
canonical process. Let b : R → R be a C2-function with lim inf |x|→∞ |b(x)| > 0. Assume that
there is an m ∈ R with b(x) = 0 if and only if x = m and with b′(m) 6= 0. Then for every pair
of compact sets K1, K2 ⊆ R we have

lim sup
t→∞

lim sup
ε↓0

ε log sup
z∈K1

Pz

(1

2

∫ tε

0

b2(Bs) ds ≤ ε, Btε ∈ K2

)

≤ −1

4
inf

z∈K1

inf
a∈K2

(

∣

∣

∫ m

z

|b(x)| dx
∣

∣ +
∣

∣

∫ a

m

|b(x)| dx
∣

∣

)2

and for every z ∈ R and every open set O ⊆ R we have

lim inf
t→∞

lim inf
ε↓0

ε log Pz

(1

2

∫ tε

0

b2(Bs) ds ≤ ε, Btε ∈ O
)

≥ −1

4
inf
a∈O

(

∣

∣

∫ m

z

|b(x)| dx
∣

∣ +
∣

∣

∫ a

m

|b(x)| dx
∣

∣

)2

.

The modulus of the integrals is taken to properly handle the cases m < z and a < m. The
proof of proposition 7 is based on the following two lemmas. Lemma 8 evaluates the infimum
of the rate function from Schilder’s theorem. Since the proof of lemma 8 is quite long, we defer
the proof until the end of the section. We will write C0([0, t], R) =

{

ω ∈ C([0, t], R)
∣

∣ ω0 = 0} as
an abbreviation.

Lemma 8 Let v : R → [0,∞) be a positive C2-function with lim inf |x|→∞ v(x) > 0 and m ∈ R

with v(x) = 0 if and only if x = m and v′′(m) > 0. For a, z ∈ R and β ≥ 0 define

Ma,z,β
t =

{

ω ∈ C[0, t]
∣

∣

∣
ω0 = 0, ωt = a − z,

1

2

∫ t

0

v(ωs + z) ds = β
}

and

J(a, z) =
1

4

(

∣

∣

∫ m

z

√

v(x) dx
∣

∣ +
∣

∣

∫ a

m

√

v(x) dx
∣

∣

)2

.

Consider the rate function

It(ω) =

{

1
2

∫ t

0
|ω̇|2 ds, if ω is absolutely continuous, and

+∞ else.

Let K1, K2 ⊆ R be compact sets with m /∈ K1 ∩ K2 and B ⊆ R+ be bounded with 0 ∈ B. Then
we have

inf
{

It(ω)
∣

∣

∣
ω ∈

⋃

β∈B

Ma,z,β
t

}

−→ 1

sup B
J(a, z) for t → ∞, (4.1)

uniformly over all a ∈ K2 and z ∈ K1.
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Lemma 9 Let Ma,z,β
t be as in lemma 8. Then for every pair K1, K2 ⊆ R of compact sets the

set
M =

⋃

z∈K1

⋃

a∈K2

⋃

0≤β≤1

Ma,z,β
t

is closed in C0([0, t], R).

Proof. By definition of the sets Ma,z,β
t we have

M =
⋃

z∈K1

{

ω ∈ C[0, t]
∣

∣

∣
ω0 = 0, ωt + z ∈ K2,

1

2

∫ t

0

v(ωr + z) dr ≤ 1
}

.

Assume that ω ∈ C0([0, t], R) \ M . Then either ωt + z /∈ K2 for all z ∈ K1, i.e. ωt lies outside
the compact set K2 − K1, or

1

2

∫ t

0

v(ωr + z) dr > 1

for every z ∈ K2, i.e.

inf
z∈K2

1

2

∫ t

0

v(ωr + z) dr > 1

because K2 is compact and v and the integral are continuous. In both cases we can find an
ε > 0, such that the ball B(ω, ε) also lies in C0([0, t], R) \ M . Thus M is the complement of an
open set.

With these preparations in place we can now give the proof for proposition 7.

Proof. (of proposition 7) We want to apply Schilder’s theorem [DZ98, theorem 5.2.1] and to
evaluate the rate function using lemma 8. Let K1, K2 ⊆ R be compact. Define the process B̃ by
setting B̃r = (Brε − z)/

√
ε for every r > 0. Then B̃ is a Brownian motion with start in 0 and

we get

Pz

(1

2

∫ tε

0

b2(Bs) ds ≤ ε, Btε ∈ K2

)

s = rε
= Pz

(1

2

∫ t

0

b2(Brε) dr ≤ 1, Btε ∈ K2,
)

= P
(1

2

∫ t

0

b2(
√

εB̃r + z) dr ≤ 1,
√

εB̃t + z ∈ K2

)

= P
(√

εB̃ ∈
⋃

a∈K2

⋃

β≤1

Ma,z,β
t

)

and thus

sup
z∈K1

Pz

(

Btε ∈ K2,
1

2

∫ tε

0

b2(Bs) ds ≤ ε
)

≤ P
(√

εB̃ ∈
⋃

z∈K1

⋃

a∈K2

⋃

β≤1

Ma,z,β
t

)

.
(4.2)

Since from lemma 9 we know that the set
⋃

z∈K1

⋃

a∈K2

⋃

β≤1 Ma,z,β
t is closed in the path

space
(

C0[0, t], ‖ · ‖∞
)

, we can apply Schilder’s theorem to get

lim sup
ε↓0

ε log sup
z∈K1

P
(√

εB̃ ∈
⋃

z∈K1

⋃

a∈K2

⋃

β≤1

Ma,z,β
t

)

≤ − inf
{

It(ω)
∣

∣

∣
ω ∈

⋃

z∈K1

⋃

a∈K2

⋃

β≤1

Ma,z,β
t

}

= − inf
z∈K1

inf
a∈K2

inf
{

It(ω)
∣

∣ ω ∈
⋃

β≤1

Ma,z,β
t

}

.
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First assume m ∈ K1 ∩ K2. Define the path ω by ωs = 0 for all s ∈ [0, t]. Then clearly we
have ω ∈ Mm,m,0

t for every t and since we find It(ω) = 0 we have

inf
{

It(ω)
∣

∣

∣
ω ∈

⋃

β∈B

Ma,z,β
t

}

= 0

for all t ≥ 0. On the other hand we have J(m, m) = 0.
Otherwise the evaluation of the infimum is done in lemma 8. Using v(x) = b2(x) we get

v′′(m) = 2(b′(m))2 > 0 and for every η > 0 we can find a t0 > 0, such that

inf
β≤1

inf
{

It(ω)
∣

∣ ω ∈ Ma,z,β
t

}

≥ J(a, z) − η

for all z ∈ K1, a ∈ K2 and t ≥ t0. This gives

lim sup
ε↓0

ε log sup
z∈K1

P
(√

εB̃ ∈
⋃

z∈K1

⋃

a∈K2

⋃

β≤1

Ma,z,β
t

)

≤ − inf
z∈K1

inf
a∈K2

inf
m∈N

J(a, z) + η

= −1

4
inf

z∈K1

inf
a∈K2

(

∣

∣

∫ m

z

|b(x)| dx
∣

∣ +
∣

∣

∫ a

m

|b(x)| dx
∣

∣

)2

+ η

for every η > 0. Together with the relation (4.2) this proves the upper bound.

For the lower bound we follow the same procedure. Without loss of generality we can assume
that O is bounded. Here we get

Pz

(

Btε ∈ O,
1

2

∫ tε

0

b2(Bs) ds ≤ ε
)

≥ Pz

(

Btε ∈ O,
1

2

∫ tε

0

b2(Bs) ds < ε
)

= P
(√

εB̃ ∈
⋃

a∈O

⋃

β<1

Ma,z,β
t

)

where the set

⋃

a∈O

⋃

β<1

Ma,z,β
t =

{

ω ∈ C[0, t]
∣

∣

∣
ω0 = 0, ωt ∈ O − z,

1

2

∫ t

0

b2(ωr + z) dr < 1
}

is open in
(

C0[0, t], ‖ · ‖∞
)

. So we can use the lower bound from Schilder’s theorem and lemma 8
to complete the proof.

Corollary 10 Under the assumptions of proposition 7 we have

lim
η↓0

lim inf
t→∞

lim inf
ε↓0

ε log inf
m−η≤z≤m+η

Pz

(1

2

∫ tε

0

b2(Bs) ds ≤ ε, Btε ∈ O
)

≥ −1

4
inf
a∈O

(

∫ a

m

|b(x)| dx
)2

for every open set O ⊆ R.

Proof. For z ∈ R define

Mz
t =

{

ω ∈ C[0, t]
∣

∣

∣
ω0 = 0, ωt + z ∈ O,

1

2

∫ t

0

b2(ωs + z) ds < 1
}

.

Let δ > 0. Choose an ω̃ ∈ Mm
t with It(ω̃) < inf{ It(ω) | ω ∈ Mm

t } + δ. Because O is open
and b and the integral are continuous we can find an E > 0, such that for every η < E the ball
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Bη(ω̃) ⊆ C0([0, t], R) is contained in all of the sets Mz
t for m − η < z < m + η. This gives

lim inf
ε↓0

ε log inf
m−η≤z≤m+η

Pz

(1

2

∫ tε

0

b2(Bs) ds ≤ ε, Btε ∈ O
)

= lim inf
ε↓0

ε log inf
m−η≤z≤m+η

Pz

(√
εB ∈ Mz

t

)

≥ lim inf
ε↓0

ε log inf
m−η≤z≤m+η

Pz

(√
εB ∈ Bη(ω̃)

)

.

and using Schilder’s theorem and the relation

− inf
{

It(ω)
∣

∣ ω ∈ Bη(ω̃)
}

≥ −It(ω̃) > − inf
{

It(ω)
∣

∣ ω ∈ Mm
t

}

− δ

we find

lim inf
ε↓0

ε log inf
m−η≤z≤m+η

Pz

(1

2

∫ tε

0

b2(Bs) ds ≤ ε, Btε ∈ O
)

≥ − inf
{

It(ω)
∣

∣ ω ∈ Bη(ω̃)
}

> − inf
{

It(ω)
∣

∣ ω ∈ Mm
t

}

− δ.

Now we can evaluate the infimum on the right hand side as we did in proposition 7. We get

lim inf
t→∞

lim inf
ε↓0

ε log inf
m−η≤z≤m+η

Pz

(1

2

∫ tε

0

b2(Bs) ds ≤ ε, Btε ∈ O
)

≥ −1

4
inf
a∈O

(

∫ a

m

|b(x)| dx
)2

− δ

for every η < E. Taking the limit δ ↓ 0 completes the proof.

The only thing which remains to be done in this section is to give a proof for lemma 8.
Before we do so we need some preparations. For the remaining part of this section we assume
throughout that v is non-negative and two times continuously differentiable and that a, z ∈ R

are fixed.

Notation: For x, y ∈ R we will write [x, y] for the closed interval between x and y; in the
case x < y this is to be read as [y, x] instead.

As a first step towards the proof of lemma 8 we get rid of the parameter β.

Lemma 11 Let {0} ⊂ B ⊆ R+ be bounded. Assume that

lim
t→∞

inf
{

It(ω)
∣

∣ ω ∈ Ma,z,1
t

}

= J(a, z)

locally uniform in a, z ∈ R. Then the relation (4.1) holds.

Proof. Let β > 0. For ω ∈ Ma,z,β
t define ω̃ by

ω̃r = ωrβ for all r ∈ [0, t/β].

Then we have ω̃0 = 0, ω̃t/β = ωt, and

1

2

∫ t/β

0

v(ω̃r + z) dr
s = rβ

=
1

β

1

2

∫ t

0

v(ωs + z) ds.

Thus ω 7→ ω̃ is a one-to-one mapping from Ma,z,β
t onto Ma,z,1

t/β .

Because of

It/β(ω̃) =
1

2

∫ t/β

0

˙̃ω2
r dr =

β2

2

∫ t/β

0

ω̇2
rβ dr

s = rβ
=

β

2

∫ t

0

ω̇2
s ds = βIt(ω)

10



we find

inf
{

It(ω)
∣

∣ ω ∈ Ma,z,β
t

}

=
1

β
inf

{

It/β(ω)
∣

∣ ω ∈ Ma,z,1
t/β

}

.

Now let z ∈ K1 and a ∈ K2. Since m /∈ K1 ∩ K2 every continuous path ω with ω0 = 0 and
ωt = a − z has

1

2

∫ t

0

v(ωs + z) ds > 0,

the set Ma,z,0
t is empty and we find

inf
{

It(ω)
∣

∣

∣
ω ∈

⋃

β∈B

Ma,z,β
t

}

= inf
β∈B\{0}

inf
{

It(ω)
∣

∣ ω ∈ Ma,z,β
t

}

= inf
β∈B\{0}

1

β
inf

{

It/β(ω)
∣

∣ ω ∈ Ma,z,1
t/β

}

.

Now let K1, K2 ⊆ R be compact. Let η > 0 and choose a t0 > 0 with

∣

∣

∣
inf

{

It(ω)
∣

∣ ω ∈ Ma,z,1
t

}

− J(a, z)
∣

∣

∣
≤ η sup B

for all t > t0, z ∈ K1, and a ∈ K2. Then for every t > t0 sup B and every β > 0 we have

∣

∣

∣
inf

{

It(ω)
∣

∣

∣
ω ∈

⋃

β′∈B

Ma,z,β′

t

}

− 1

β
J(a, z)

∣

∣

∣

=
∣

∣

∣

1

β
inf

{

It(ω)
∣

∣ ω ∈ Ma,z,1
t/β

}

− 1

β
J(a, z)

∣

∣

∣
≤ η sup B

β

Choosing β = supB gives

∣

∣

∣
inf

{

It(ω)
∣

∣

∣
ω ∈

⋃

β∈B

Ma,z,β
t

}

− 1

sup B
J(a, z)

∣

∣

∣
≤ η

for all t > t0 sup B, z ∈ K1, and a ∈ K2. Because η was arbitrary, this completes the proof.

Because of It(ω + z) = It(ω) we can shift every path from Ma,z,1
t by z and get

inf
{

It(ω)
∣

∣ ω ∈ Ma,z,1
t

}

= inf
{

It(ω)
∣

∣

∣
ω0 = z, ωt = a,

1

2

∫ t

0

v(ωs) ds = 1
}

.

For the moment assume that there is a path ω̃ with It(ω̃) = inf
{

It(ω)
∣

∣ ω ∈ Ma,z,1
t

}

. Later we
will show that such an ω̃ in fact does exist. In order to evaluate the rate function It for this
path ω̃, we solve the Euler-Lagrange equations (see section 12 of [GF63]) for extremal values
of It under the constraint

K(ω) =
1

2

∫ t

0

v(ωs) ds
!
= 1

and with the boundary conditions

ω0 = z and ωt = a.

Because of v ∈ C2(R) we can use theorem 1 from section 12.1 of [GF63] to find that for every
extremal point ω of I, under the given constraints, there is a constant λ, such that ω solves the
equations

ω̈s = λv′(ωs) for all s ∈ (0, t], and ω0 = z (4.3a)

1

2

∫ t

0

v(ωs) ds = 1 (4.3b)

ωt = a. (4.3c)
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Existence of solutions: the autonomous second order equation (4.3a) describes the motion of
a classical particle on the real line in the potential −λv. The differential equation can be reduced
to an autonomous first order equation in the plane with the usual trick: defining x(s) = (ωs, ω̇s)
and F (x1, x2) =

(

x2, λv′(x1)
)

the equation becomes

ẋ(s) = F (x(s)) for all s ∈ [0, t].

See e.g. section 5.3 of [BR89] for details. Because v′ and thus F is locally Lipschitz continuous,
for every pair ω0 = z, ω̇0 = v0 of initial conditions and every bounded region we find a unique
solution of the ODE at least up to the boundary of that region (see theorem 8 in section 6.9
of [BR89]).

There are two degrees of freedom in (4.3a) because we can choose ω̇0 and λ. In the following
we will show, that the two additional conditions (4.3b) and (4.3c) guarantee the existence of a
unique solution to the system (4.3).

For λ = 0 the only solution of (4.3a) and (4.3c) is given by ωs = z + (a− z)s/t for 0 ≤ s ≤ t
and consequently in this case we have

1

2

∫ t

0

v(ωs) ds = th(z, a)

with

h(z, a) =

{

1
2(a−z)

∫ a

z
v(x) dx, if a 6= z, and

1
2v(z) else.

Since m 6= K1 ∩ K2, z ∈ K1, and a ∈ K2 we have h(z, a) > 0 for every z ∈ K1, a ∈ K2 and
because K1 × K2 is compact we find c = inf(z,a)∈K1×K2

h(z, a) > 0. In the following assume
t > 1/c. Then we know from (4.3b) that every solution of (4.3) has λ 6= 0.

The interpretation as the motion of a classical particle helps us to determine the behaviour
of the solutions. We can use conservation of energy: Because of

∂s

(1

2
ω̇2

s − λv(ωs)
)

= ω̇sω̈s − λv′(ωs)ω̇s = ω̇s

(

ω̈s − λv′(ωs)
) (4.3a)

= 0

we have
1

2
ω̇2

s − λv(ωs) =
1

2
ω̇2

0 − λv(ω0) =: E for all s ∈ [0, t]. (4.4)

This conservation law describes the speed for any point of the path: the speed of the path at
point ωs is

|ω̇s| =
√

2(E + λv(ωs)). (4.5)

Thus the rate function It can be expressed as a function of E and λ as follows.

It(ω) =
1

2

∫ t

0

ω̇2
s ds =

∫ t

0

E + λv(ωs) ds

= tE + 2λ, (4.6)

where λ and E are determined by equations (4.3b) and (4.3c).

Because of relation (4.4) we find that whenever ω is a solution of (4.3a) we have E ≥ −λv(ωs)
for all s ∈ [0, t] and the path can only stop and turn at points x with −λv(x) = E. Let x ∈ R

be such a point and assume v′(x) = 0. Then η with ηs = x for all s ≥ 0 is the unique solution
of (4.3a) with η0 = x and η̇0 = 0. Now assume that ωs = x for some s > 0. Then (ωs−r)r∈[0,s]

is also a solution of (4.3a) with start in x and initial speed 0, so we have ωs−r = ηr = x for all
r ∈ [0, s]. This shows that a point x 6= z with E = −λv(x) and v′(x) = 0 cannot be reached by
a solution ω of (4.3a). Thus whenever a non-constant path reaches an x ∈ R with E = −λv(x)
then we have ω̈s = λv′(ωs) 6= 0 and the path always changes direction there. Figure 1 illustrates
two different kinds of solution, one where ωs moves monotonically and one where the path reaches
a point b with −λv(b) = E and turns there.

Since the differential equation (4.3a) is autonomous and since a solution ω changes direction
every time is reaches a point x with −λv(x) = E, the path can reach at most two distinct points

12



xz

−λv(x)

E

m a x
z

−λv(x)

E

ma b

Figure 1: This figure illustrates two types of solution for equation (4.3a). Here we only consider
the case λ > 0. The curved line is the graph of the function x 7→ −λv(x). The bold part
of the lines corresponds to the points visited by the path ω. The thick dots are

(

ω0,−λv(ω0)
)

and
(

ωt,−λv(ωt)
)

. Both solutions start at z ∈ K1, head towards a neighbourhood of the zero m,
and finally reach a point a ∈ K2. The left hand image shows a free solution, i.e. one with E > 0,
the right hand image shows a bound solution, i.e. one with E ≤ 0 where the path ω turns at the
point b with −λv(b) = E.

of these nature. In this case the solution oscillates between these points periodically. Thus every
solution of (4.3a) changes direction only a finite number of times before time t.

In order to find the path which minimises the rate function It we need to keep track of the
different possible traces of the path. For the remaining part of this section we use the following
notation. The path (ωs)0≤s≤t is said to have trace T = (x0, x1, . . . , xn) when ω0 = x0, ωt = xn,
and the path ω moves monotonically in either direction from xi−1 to xi for i = 1, . . . , n in order
and changes direction only at the points x1, . . . , xn−1. We use the abbreviation

|T | =

n
∑

i=1

|xi − xi−1|

for the length of the trace and sometimes identify T with the set
⋃n

i=1[xi−1, xi] of covered points
to write min T , maxT , v|T , or infx∈T v(x). For positive functions f : R → R we use the notation

∫

T

f(x) dx :=

n
∑

i=1

∣

∣

∫ xi

xi−1

f(x) dx
∣

∣.

The absolute values are taken to make the integral positive even when xi < xi−1. If a solution ω
of (4.3a) has trace T = (x0, x1, . . . , xn), this then implies that v(x1) = · · · = v(xn−1) = −E/λ
and each of the x1, . . . , xn−1 is either min T or max T . Between the points xi the path is strictly
monotonic, i.e. after the start in z it oscillates zero or more times between min T and max T
before it reaches a at time t. Using this notation we can formulate the following Lemma.

Lemma 12 Let λ, E ∈ R and a trace T = (x0, . . . , xn) be given. Then the following two
conditions are equivalent.

(j) The unique solution ω : [0, t] → R of

ω̈s = λv′(ωs) for all s ∈ [0, t]

with initial conditions ω0 = z and ω̇0 = sgn(x1 − x0)
√

2(E + λv(0)) has trace T and
solves (4.3b) and (4.3c).

(ij) We have x0 = z, xn = a, E = −λv(xi) for i = 1, . . . , n − 1, as well as E > −λv(x)
for all min T < x < maxT , and the pair (λ, E) solves

∫

T

v(x)
√

E + λv(x)
dx =

√
8 (4.7a)
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and

∫

T

1
√

E + λv(x)
dx =

√
2t. (4.7b)

Proof. Assume the conditions from (j). Then ω is a solution of (4.3a), there are times
t0, t1, . . . , tn with ωti

= xi for i = 0, . . . , n, and between the times ti the process moves mono-
tonically. For any integrable, positive function g : R → R substitution using (4.5) yields

∫ t

0

g(ωs) ds =

n
∑

i=1

∫ ti

ti−1

g(ωs) ds

=

n
∑

i=1

∫ xi

xi−1

g(x)
dx

sgn(xi − xi−1)
√

2(E + λv(x))

=

∫

T

g(x)
√

2(E + λv(x))
dx. (4.8)

Applying (4.8) to the function g = v gives

1
(4.3b)

=
1

2

∫ t

0

v(ωs) ds
(4.8)
=

1√
8

∫

T

v(x)
√

E + λv(x)
dx.

This is equation (4.7a). Applying (4.8) to the constant function g = 1 gives

t =

∫ t

0

1 ds
(4.8)
=

1√
2

∫ a

0

1
√

E + λv(x)
dx,

which is equation (4.7b).
Now assume condition (ij). For i = 1, . . . , n define the function Fi by

Fi(x) =
1√
2

∣

∣

∫ x

xi−1

1
√

E + λv(x)
dx

∣

∣

for all x between xi−1 and xi. Then Fi is finite because of (4.7b), strictly monotonic (increasing
if xi > xi−1 and decreasing else), and has Fi(xi−1) = 0. Further define

tk =

k
∑

i=1

Fi(xi).

Equation (4.7b) gives tn = t. Because the functions Fi are monotonic they have inverse functions
F−1

i and we can define ω : [0, t] → R by

ω(s) = F−1
i (s − ti−1) for all s ∈ [ti−1, ti].

We will prove that ω satisfies all the conditions from (j).
Because we have ti − ti−1 = Fi(xi) and thus F−1

i (ti − ti−1) = xi = F−1
i+1(ti − ti) the function

ω is well-defined on the connection points at times ti and is continuous. This also shows ωti
= xi

for i = 0, 1, . . . , n and especially ω0 = x0 = z and ωt = xn = a.
Because the Fi are differentiable at all points x strictly between xi−1 and xi, the function ω

is differentiable on the intervals (ti−1, ti) with derivative

ω̇s =
1

F ′
i (ωs)

= sgn(xi − xi−1)
√

2(E + λv(ωs)).

Because ω is continuous and the limits lims→ti
ω̇s exist, we see that ω is even differentiable on

[0, t] with ω̇0 = sgn(x1 − x0)
√

2(E + λv(0)) and ω̇ti
= 0 for i = 1, . . . , n − 1.
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λ0

E

− inf
x∈T

λv(x)

HT

Figure 2: This figure illustrates the domain HT of the functions f and g. The domain is
unbounded in directions λ → ∞ and E → ∞. It is bounded from below by λ 7→ − infx∈T λv(x),
which is equal to −λ supx∈T v(x) for λ ≤ 0 and to −λ infx∈T v(x) for λ ≥ 0.

Using the same kind of argument again, we find

ω̈s =
sgn(xi − xi−1)

2
√

2(E − λv(ωs))
2λv′(ωs) sgn(xi − xi−1)

√

2(E − λv(ωs)) = λv′(ωs),

first between the ti and then on the whole interval [0, t]. Thus ω really solves the differential
equation from (j).

Using the substitution

1

2

∫ t

0

v(ωs) ds =
1√
8

∫

T

v(x)
√

E + λv(x)
dx

as in the first part, we also get back (4.3b) from (4.7a).

Now we have reduced the problem of minimising It(ω) over the solutions ω of the system (4.3)
to the problem of minimising

It(E, λ) = tE + 2λ

over the solutions (E, λ) of the system (4.7).
For a trace T define

HT =
{

(E, λ)
∣

∣ E ≥ − inf
x∈T

λv(x)
}

⊆ R
2

and furthermore define the functions f, g : Ht → [0,∞] by

f(E, λ) =

∫

T

1
√

E + λv(x)
dx

and

g(E, λ) =

∫

T

v(x)
√

E + λv(x)
dx.

Figure 2 illustrates the domain HT . Both functions are finite in the interior of the domain,
but can be infinite at the boundary. The equations (4.7) are equivalent to f(Eλ, λ) =

√
2t and

g(E, λ) =
√

8. For paths which change direction at some point we will find solutions (E, λ)
of (4.7), which lay on the boundary of HT . For paths which go straight from z to a we will find
solutions (E, λ) in the interior of HT .
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Lemma 13 Let t > 0 and T be a trace from z ∈ R to a ∈ R such that v|T is not constant. Then
there is at most one solution (E, λ) of (4.7).

Proof. For E > − infx∈T λv(x) we can choose an E∗ between − infx∈T λv(x) and E. Then
v(x)/(E∗ +λv(x))3/2 is an integrable upper bound of v(x)/(e+λv(x))3/2 for all e in a (E −E∗)-
Neighbourhood of E. So we can use the theorem about interchanging the Lebesgue-integral with
derivatives to get

∂

∂E
g(E, λ) = −1

2

∫

T

v(x)
(

E + λv(x)
)3/2

dx < 0.

So for every λ the map E 7→ g(E, λ) is strictly decreasing and there can be at most one Eλ with
g
(

Eλ, λ
)

=
√

8.
With the help of the implicit function theorem we can calculate the derivative of Eλ. Inter-

changing the integral with the derivative as above we get

∂

∂λ
Eλ = −

∂
∂λg(Eλ, λ)
∂

∂E g(Eλ, λ)

= − (− 1
2 )

∫

T
v2(x)

(

Eλ + λv(x)
)−3/2

dx

(− 1
2 )

∫

T v(x)
(

Eλ + λv(x)
)−3/2

dx

= −
∫

T
v2(x) dµ(x)

∫

T v(x) dµ(x)

where µ is the probability measure, with density

dµ

dx
=

1

Z

(

Eλ + λv(x)
)−3/2

and the normalisation constant is

Z =

∫

T

(

Eλ + λv(y)
)−3/2

dy.

Furthermore for (E, λ) ∈ (HT )◦ we have

∂

∂E
f(E, λ) = −1

2

∫

T

(

E + λv(x)
)−3/2

dx = −Z

2

and thus

∂

∂λ

(

f(Eλ, λ)
)

=
∂f

∂E
(Eλ, λ)

∂

∂λ
Eλ +

∂f

∂λ
(Eλ, λ)

=
Z

2

∫

T
v2(x) dµ(x)

∫

T
v(x) dµ(x)

− Z

2

∫

T

v(x) dµ(x)

=
Z

2

∫

T
v2(x) dµ(x) −

(∫

T
v(x) dµ(x)

)2

∫

T v(x) dµ(x)

≥ 0.

Equality would only hold for the case of constant v|T . So the map λ 7→ f(Eλ, λ) is strictly

increasing and there can be at most one λ with f
(

Eλ, λ
)

=
√

2t. This completes the proof.

Lemma 14 Let T a trace with m ∈ T and t ≥ 2|T |/
∫

T
v(x) dx. Then equation (4.7) has a

solution (E, λ) with with E, λ > 0.

Proof. Define λ∗ = (
∫

T

√

v(x) dx)2/8 and assume 0 < λ ≤ λ∗. Then we have

g(0, λ) =

∫

T

v(x)
√

λv(x)
dx =

1√
λ

∫

T

√

v(x) dx ≥
√

8.
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and the dominated convergence theorem gives

lim
E→∞

g(E, λ) = 0.

Thus for all 0 < λ ≤ λ∗ there exists an Eλ ≥ 0 with g(Eλ, λ) =
√

8.
Because of g(0, λ∗) =

√
8 we have Eλ∗ = 0. Fatou’s lemma then gives

lim inf
λ↑λ∗

f(Eλ, λ) ≥
∫

T

1
√

λ∗v(x)
dx.

Because v is positive and v(m) = 0, we have v′(m) = 0 and v′′(m) ≥ 0. Then by Taylor’s theorem
there exists a c > 0 and a closed interval I ⊆ R with m ∈ I ⊆ T , such that v(x) ≤ c2(x − m)2

for all x ∈ I. Therefore we find
∫

T

1
√

v(x)
dx ≥

∫

I

1
√

c2(x − m)2
dx =

∫

I

1

c|x − m| dx = +∞

and thus λ 7→ f(Eλ, λ) is a continuous function with

lim
λ↑λ∗

f(Eλ, λ) = +∞.

On the other hand because of g(E0, 0) =
√

8 we have E0 = (
∫

T v(x) dx)2/8. So for λ = 0 we
get

f(E0, 0) =

∫

T

1√
E0

dx =

√
8

∫

T
v(x) dx

|T |.

Together this shows that for all

t ≥ 2|T |
∫

T
v(x) dx

there exists a solution (Eλ, λ) with f(Eλ, λ) =
√

2t.

Lemma 15 There are numbers ε, c1, c2 > 0 such that the following holds: For every trace T
starting in K1, ending in K2, and visiting the ball Bε(m) there is a non-empty, closed interval
A ⊆ R, such that A ⊆ T , |A| = ε and we have c1 ≤ v(x) ≤ c2 for every x ∈ A.

Proof. Because m /∈ K1 ∩ K2 either K1 or K2 has a positive distance from m. Let ε be one
third of this distance. Define A′ = { x ∈ R | ε ≤ |x − m| ≤ 2ε } and let c1 = inf{ v(x) | x ∈ A′}
and c2 = sup{ v(x) | x ∈ A′}.

Each trace starting in K1, ending in K2, and visiting the ball Bε(m) either crosses [m −
2ε, m − ε] or [m + ε, m + 2ε]. Let A be the crossed interval. Then clearly |A| = ε and and
because of A ⊆ A′ the estimates for v hold on A.

Lemma 16 For every η > 0 there is a t1 > 0, such that whenever t ≥ t1, T is a trace from
z ∈ K1 to a ∈ K2 with m ∈ [z, a] and (E, λ) solves (4.7), then we have

∣

∣

∣
It(E, λ) − 1

4

(

∫

T

√

v(x) dx
)2∣

∣

∣
≤ η.

Proof. This case is illustrated in the left hand image of figure 1. Because of m ∈ [z, a], any
path from z to a must visit m and thus we find E > −λv(m) = 0. Thus the only possible trace
in this case is T = (z, a), because the process could only turn at points x where −λv(x) = E.

Now let η > 0. Define L = sup
{

|a − z|
∣

∣ z ∈ K1, a ∈ K2

}

. Then we get

√
2t =

∫

T

1
√

E + λv(x)
dx ≤

∫ a

z

1√
E

dx ≤ L√
E

and thus

E ≤ L2

2t2
.

17



So we can find a t1 > 0 with
Et < η (4.9)

whenever t ≥ t1.
Choosing A, c1, and c2 as in lemma 15 we get

√
8 =

∫

T

v(x)
√

E + λv(x)
dx ≥

∫

A

c1√
E + λc2

dx =
c1|A|√
E + λc2

and thus

λ ≥ c2
1|A|2 − E

8c2
≥ c2

1|A|2 − L2/2t2

8c2
.

So we can choose a small c3 > 0 and increase t1 to achieve λ > c3 whenever t ≥ t1.
Because of

lim
E↓0

∫

T

v(x)
√

E + v(x)
dx =

∫

T

√

v(x) dx

we can find a c4 > 0 with

∫

T

v(x)
√

E + v(x)
dx ≥

√

1 − η/J(z, a)

∫

T

√

v(x) dx

for all E ≤ c4. Increase t1 until
L2

2t2c3
< c4

and thus

√
8 =

∫

T

v(x)
√

E + λv(x)
dx

≥ 1√
λ

∫

T

v(x)
√

L2/2t2λ + v(x)
dx

≥ 1√
λ

∫

T

v(x)
√

c4 + v(x)
dx

≥ 1√
λ

√

1 − η/J(z, a)

∫

T

√

v(x) dx

for all t ≥ t1. Solving this for λ we get

2λ ≥ (1 − η/J(z, a))J(z, a) = J(z, a) − η. (4.10)

Because E is positive we also find

√
8 =

∫

T

v(x)
√

E + λv(x)
dx ≤ 1√

λ

∫

T

√

v(x) dx

and thus
2λ ≤ J(z, a). (4.11)

For the rate function It equation (4.10) gives

It(E, λ) = Et + 2λ ≥ J(z, a) − η

and equations (4.9) and (4.11) give

It(E, λ) = Et + 2λ ≤ J(z, a) + η

for all t > t1.

18



Lemma 17 For every η > 0 there is a t2 > 0, such that whenever t ≥ t2, T is a trace from
z ∈ K1 to a ∈ K2 with m /∈ [z, a], and (E, λ) solves (4.7), then we have

∣

∣

∣
It(E, λ) − 1

4

(

∫

T

√

v(x) dx
)2∣

∣

∣
≤ η.

Proof. This case is illustrated in the right hand image of figure 1. Because the path has to
change direction we will have E < 0 in this case. Without loss of generality we can assume
that m < a, z. We call a value b ∈ R admissible if it lies in the interval (m, min(a, z)) and
if additionally v(x) > v(b) for all x > b holds. For admissible values b consider the trace
T = (z, b, a) and define

hz,a(b) = 2

∫

(z,b,a)
1√

v(x)−v(b)
dx

∫

(z,b,a)
v(x)√

v(x)−v(b)
dx

.

Using Taylor approximation as in lemma 14, one sees that for b → m the numerator converges
to +∞ and by dominated convergence the denominator converges to

∫

(0,m,a)

√

v(x) dx. So h is

a continuous function with hz,a(b) → ∞ for b → m.
Let ε, c1, and c2 and A be as in lemma 15. We would like to find a b ∈ Bε(m) with hz,a(b) = t,

so we need an upper bound on
inf

b∈(m,m+ε)
ha,z(b) (4.12)

which is uniform in a and z. We find

hz,a(b) ≤ 2
supz∈K1,a∈K2

∫

(z,b,a)
1√

v(x)−v(b)
dx

∫

A
c1√
c2

dx
. (4.13)

Because v′′(m) > 0 and lim inf |x|→∞ v(x) > 0, we can decrease ε to ensure that v′(x) ≥
v′′(m)(x − m)/2 for all x ∈ [m, m + ε] and v(x) ≥ v(m + ε) for all x ≥ m + ε. Using Tay-
lor’s theorem again we get

v(x) − v(b) = v′(ξ)(x − b) ≥ v′′(m)(b − m)

2
(x − b)

for some ξ ∈ [b, x] for all x ∈ [m, m + ε]. Thus we can conclude

∫

(z,b,a)

1
√

v(x) − v(b)
dx

≤ 2

∫ m+ε

b

1
√

v′′(m)(b−m)
2 (x − b)

dx

+

∫ z

m+ε

1
√

v(m + ε) − v(b)
dx +

∫ a

m+ε

1
√

v(m + ε) − v(b)
dx

≤ 2

√

2

v′′(m)(b − m)

√
m + ε − b

+ 2
1

√

v(m + ε) − v(b)
sup

{

|x − m|
∣

∣ x ∈ K1 ∪ K2

}

.

(4.14)

The right hand side of (4.14) is independent of a and z. So we can take the infimum over all
b ∈ (m, m + ε) and use (4.13) to get the uniform upper bound on (4.12). Call this bound t2.

Now let t > t2. Then for every z ∈ K1 and a ∈ K2 we can find a b ∈ (m, m + ε) with
hz,a(b) = t. Further define λ > 0 by

√
λ =

1√
8

∫

(z,b,a)

v(x)
√

v(x) − v(b)
dx
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and E by
E = −λv(b).

Then for the trace T = (z, b, a) these values E and λ solve

E + λv(b) = 0,
∫

(z,b,a)

v(x)
√

E + λv(x)
dx =

1√
λ

∫

(z,b,a)

v(x)
√

v(x) − v(b)
dx =

√
8

and
∫

(z,b,a)

1
√

E + λv(x)
dx =

1√
λ

∫

(z,b,a)

1
√

v(x) − v(b)
dx =

√
2t.

For t → ∞ we have b → m uniformly in a and z,

λ → 1

8

(

∫

(z,m,a)

v(x)
√

v(x) − v(m)
dx

)2

=
1

8

(

∫

(z,m,a)

√

v(x) dx
)2

,

and again E → 0 (this time from below). This gives

It(E, λ) =
1

2

∫

T

√

2(E + λv(x)) dx → 1

4

(

∫

(z,m,a)

√

v(x) dx
)2

which proves the lemma.

With all these preparations in place we are now ready to calculate the asymptotic lower
bound from lemma 8.

Proof. (of lemma 8) Because of lemma 11 we can restrict ourselves to the case β = 1, i.e. we
have to prove

lim
t→∞

inf
{

It(ω)
∣

∣ ω ∈ Ma,z,1
t

}

= J(a, z)

locally uniformly in a, z ∈ R.
Let K1, K2 ⊆ R be compact with 0 /∈ K1 ∩ K2 and η > 0. Furthermore let z ∈ K1 and

a ∈ K2.
Assume first the case m ∈ [z, a]. From lemma 16 we get a t0 > 0, such that for every t > t0

there exists a solution (E, λ) of (4.7) for the trace T = (z, a) with
∣

∣It(E, λ)− J(a, z)
∣

∣ ≤ η. This
t0 only depends on K1 and K2, but not on z and a.

Now assume the case m /∈ [z, a]. From lemma 17 we again get a t0 > 0, such that for every
t > t0 there exists a solution (E, λ) of (4.7) for a trace T = (z, x1, a) with

∣

∣It(E, λ)−J(a, z)
∣

∣ ≤ η
and t0 only depends on K1 and K2, but not on z and a.

In either case we can use lemma 12 to conclude, that there exists an ω, which solves (4.3a),
(4.3b), and (4.3c). Because of (4.6) this path has

∣

∣It(ω) − J(a, z)
∣

∣ ≤ η.

Let c = inf
{

It(ω)
∣

∣ ω ∈ Ma,z,1
t

}

. Because the path ω constructed just now is both, in Ma,z,1
t

and absolutely continuous, we have c < ∞. Let Mn = Ma,z,1
t ∩ {ω | It(ω) < c + 1/n }. Because

Ma,z,1
t is closed and It is a good rate function, the sets Mn are compact, non-empty, and satisfy

Mn ⊇ Mn+1 for every n ∈ N. So the intersection M =
⋂

n∈N
Mn is again non-empty. Because

every ω̃ ∈ M has It(ω̃) = c, we see that there in fact exists a path ω̃ for which the infimum is
attained. From the Euler-Lagrange method we know that ω̃ also solves equations (4.3a), (4.3b),
and (4.3c). From lemmas 12 and 13 we know that the solution is unique, so ω̃ must coincide
with our path ω constructed above and we get

∣

∣

∣
inf

{

It(ω)
∣

∣ ω ∈ Ma,z,1
t

}

− J(a, z)
∣

∣

∣
≤ η

for all z ∈ K1, a ∈ K2 and t ≥ t0. Since η > 0 was arbitrary this completes the proof of
lemma 8.
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5 Staying Near the Equilibrium

In this section we study the event that for some drift function b the integral 1
2

∫ t

0 b2(Bs) ds is
small. In contrast to the previous section, here we are considering long time intervals but have no
conditions on the final point. The main result of this section are the following two propositions.

Proposition 18 Let b : R → R be a differentiable function with b(0) = 0, b′(0) 6= 0 and
lim inf |x|→∞ |b(x)| > 0. Then for every η > 0 we have

lim
ε↓0

ε log P
(1

2

∫ t

0

b2(Bs) ds ≤ ε, sup
0≤s≤t

|Bs| ≤ η
)

= lim
ε↓0

ε log P
(1

2

∫ t

0

b2(Bs) ds ≤ ε
)

= − |b′(0)|2t2
16

.

Proposition 19 Let b : R → R be a differentiable function with b(0) = 0, b′(0) 6= 0 and
lim inf |x|→∞ |b(x)| > 0. Then for every η > 0 we have

lim
ζ↓0

lim inf
ε↓0

ε log inf
−ζ<z<ζ

Pz

(1

2

∫ t

0

b2(Bs) ds ≤ ε, sup
0≤s≤t

|Bs| ≤ η
)

= − |b′(0)|2t2
16

and

lim sup
ε↓0

ε log sup
y∈R

Py

(1

2

∫ t

0

b2(Bs) ds ≤ ε, sup
0≤s≤t

|Bs| ≤ η
)

= − |b′(0)|2t2
16

.

The rest of this section is devoted to the proof of these two propositions. The main idea of
the proof is to use Taylor approximation around the zero of b to reduce the problem to the case
of linear b. We start by proving a result for the case b(x) = x.

Lemma 20 Let B be a one-dimensional Brownian Motion. Then

lim
ε↓0

ε log Px

(
∫ t

0

B2
s ds ≤ ε, Bt ∈ A

)

= −
(

t + x2 + ess infz∈A z2
)2

8

for every x ∈ R and every set A with P (Bt ∈ A) > 0 and in particular

lim
ε↓0

ε log P

(
∫ t

0

B2
s ds ≤ ε

)

= − t2

8
.

Proof. Formula (1–1.9.7) from [BS96] gives

∫

1A(ωt) exp
(

−ϑ2

2

∫ t

0

ω2
s ds

)

dWx(ω)

=

∫

A

√
ϑ

√

2π sinh(tϑ)
exp

(

− (x2 + z2)ϑ cosh(tϑ) − 2xzϑ

2 sinh(tϑ)

)

dz.

By definition of cosh and sinh there are constants 0 < c1 < c2 with

c1e
−tϑ/2 ≤ 1

√

2π sinh(tϑ)
≤ c2e

−tϑ/2 for all ϑ > 1. (5.1)

(The value 1 is arbitrary, any positive number would do.) Also we can use the relation |2xy| ≤
x2 + y2 to get

(x2 + z2)

2

cosh(γt) − 1

sinh(γt)
≤ (x2 + z2) cosh(γt) − 2xz

2 sinh(γt)
≤ (x2 + z2)

2

cosh(γt) + 1

sinh(γt)
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for all x, z ∈ R. Now let η > 0. Because of

cosh(ϑt) ± 1

sinh(ϑt)
=

e
ϑt + e

−ϑt ± 1

e
ϑt − e

−ϑt
−→ 1 for ϑ → ∞.

we can then find a ϑ0 > 0, such that whenever ϑ > ϑ0 the estimate

x2 + z2

2
(1 − η) ≤ (x2 + z2) cosh(ϑt) − 2xz

2 sinh(ϑt)
≤ x2 + z2

2
(1 + η)

holds for all x, z ∈ R. Thus we can conclude

lim
ϑ→∞

1

ϑ
log Ex

(

exp
(

−ϑ2

2

∫ 1

0

B2
s ds

)

1A(Bt)
)

= lim
ϑ→∞

1

ϑ
log

√
ϑ

∫

A

1
√

2π sinh(tϑ)
exp

(

−ϑ
(x2 + z2) cosh(tϑ) − 2xz

2 sinh(tϑ)

)

dz

= lim
ϑ→∞

1

ϑ
log

∫

A

e
−tϑ/2 exp

(

−ϑ
x2 + z2

2

)

dz

= −1

2
ess infz∈A

(

t + x2 + z2
)

.

The exponential Tauber theorem [BGT87, theorem 4.12.9] now gives the first equality of the
claim. The second claim follows by taking x = 0 and A = R.

We will also need a version of lemma 20 which holds uniformly in the initial condition x.
This is given in the following lemma.

Lemma 21 Let B be a one-dimensional Brownian Motion and A ⊆ R closed. Then

lim
ε↓0

ε log sup
x∈A

Px

(

∫ t

0

B2
s ds ≤ ε

)

= − inf
x∈A

(t + x2)2

8
.

Proof. Let x, y ∈ A with 0 < |x| < |y|. Then the symmetry of Brownian motion and Anderson’s
inequality [And55, corollary 5] applied to the processes X = B + |x| and Y = B + |y| gives

Px

(

∫ t

0

B2
s ds ≤ ε

)

≥ Py

(

∫ t

0

B2
s ds ≤ ε

)

. (5.2)

Now choose x ∈ A with |x| = inf{ |y| | y ∈ A }. Then the estimate (5.2) becomes

Px

(

∫ t

0

B2
s ds ≤ ε

)

= sup
y∈A

Py

(

∫ t

0

B2
s ds ≤ ε

)

and the claim follows with lemma 20.

The following lemma gives a set of conditions under which dominated terms can be neglected
when calculating large deviation rate functions. The proof is elementary and we omit it here.

Lemma 22 Let f, g : R+→ R+ be two functions and assume that either one of the two conditions
lim supε↓0 ε log g(ε) ≤ lim infε↓0 ε log f(ε) or lim supε↓0 ε log g(ε) < lim infε↓0 ε log

(

f(ε) + g(ε)
)

holds. Then we have

lim inf
ε↓0

ε log
(

f(ε) + g(ε)
)

= lim inf
ε↓0

ε log f(ε)

and

lim sup
ε↓0

ε log
(

f(ε) + g(ε)
)

= lim sup
ε↓0

ε log f(ε).
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In order to make the Taylor approximation work we need upper bounds on the probability
that the process leaves a neighbourhood of the zero of b. This is given by the following lemma.

Lemma 23 Let B be a Brownian motion, a, t > 0, and v : R → R be a function with v(x) ≥
x2 ∧ a2 for every x ∈ R. Then we have

lim sup
ε↓0

ε log sup
x∈R

Px

(

∫ t

0

v(Bs) ds ≤ ε, sup
0≤s≤t

|Bs| > a
)

≤ −1

8

(

t +
1

2
a2

)2

.

Proof. We need to find an upper bound on the exponential rate for the probability of the event

Aε =
{

∫ t

0

v(Bs) ds ≤ ε, sup
0≤s<t

|Bs| > a
}

,

which is uniform in the initial point B0 = x. First define two interlaced sequences of stopping
times (Sj)j∈N and (Tj)j∈N0

by letting T0 = 0 and

Sj = inf
{

s > Tj−1

∣

∣ |Bs| ≥ a
}

Tj = inf
{

s > Sj

∣

∣ |Bs| = a/2
}

for all j ∈ N. If the initial point B0 = x has |x| > a we have S0 = 0 and |BS0
| > a. Except for

this we have |BSj
| = a. For s ∈ [Sj , Tj] we have |Bs| ≥ a/2 and thus v(Bs) ≥ a2/4. Outside

these intervals we have |Bs| < a and thus v(Bs) ≥ B2
s . Therefore we can conclude

{

∫ Tj

Sj

v(Bs) ds ≤ ε
}

⊆
{

∫ Tj

Sj

a2/4 ds ≤ ε
}

=
{

Tj − Sj ≤ 4ε/a2
}

and for d > 0 also

{

∫ Sj

Tj−1

v(Bs) ds ≤ ε, Sj − Tj−1 ≥ d
}

⊆
{

∫ Sj

Tj−1

B2
s ds ≤ ε, Sj − Tj−1 ≥ d

}

⊆
{

∫ Tj−1+d

Tj−1

B2
s ds ≤ ε

}

.

As an abbreviation define J = ⌈2t/a2⌉ + 1 where ⌈x⌉ = min{n ∈ N | n ≥ x }. We want to
split the set Aε into the two parts

Aε =
(

Aε ∩ {TJ ≤ t}
)

∪
(

Aε ∩ {TJ > t}
)

.

The first part corresponds to the case that there are at least J excursions up to the level |Bs| = a
and then back to |Bs| = a/2 before time t. For this case we will get an upper bound on the
probability from the fact that the process has to move very fast during the intervals [Sj , Tj ].
The second part corresponds to the case that there are at most J − 1 such excursions. This case
is more difficult, because we have to take the intervals between the excursions into account.

First consider the case TJ ≤ t. Here we have

Aε ∩ {TJ ≤ t} ⊆
{

J
∑

j=1

∫ Tj

Sj

v(Bs) ds ≤ ε
}

⊆
{

J
∑

j=1

(Tj − Sj) ≤ 4ε/a2
}

.

Using the strong Markov property for Brownian motion and the reflection principle we find

Px

(

Tj − Sj ≤ ε
)

≤ P
(

sup
0≤s≤ε

Bs > a/2
)

= 2P
(

Bε > a/2
)

= 2P
(√

εB1 > a/2
)
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for all x ∈ R. The basic large deviation result for the standard normal distribution on R now
gives

lim
ε↓0

ε log sup
x∈R

Px

(

Tj − Sj ≤ ε
)

≤ −1

2

(

a/2
)2

= −a2

8
.

In this situation we can apply proposition 6 to get

lim sup
ε↓0

ε log sup
x∈R

Px

(

Aε ∩ {TJ ≤ t}
)

≤ lim sup
ε↓0

ε log Px

(

J
∑

j=1

(Tj − Sj) ≤ 4ε/a2
)

=
a2

4
lim sup

ε↓0
ε log Px

(

J
∑

j=1

(Tj − Sj) ≤ ε
)

≤ −a2

4

(

J
∑

j=1

a√
8

)2

≤ −1

8

(

t +
1

2
a2

)2
.

(5.3)

Now consider the case TJ > t. Choose n ∈ N with n > 2J and ε > 0 with 4ε/a2 < t/n.
Define ∆t = t/n, the intervals I1 = [0, ∆t] and Ik =

(

(k − 1)∆t, k∆t
]

for k = 2, . . . , n, the index
set

Q =
{

(k1, . . . , kℓ) ∈ N
ℓ
∣

∣

∣
ℓ ∈ {1, . . . , J}, 1 ≤ k1 ≤ · · · ≤ kℓ ≤ n

}

,

and the event
Aε

(k1,...,kℓ)
= Aε ∩

{

Sj ∈ Ikj
for j = 1, . . . , ℓ and Sℓ+1 > t

}

.

Then we have
Aε ∩ {TJ > t} =

⋃

q∈Q

Aε
q.

Choose (k1, . . . , kℓ) ∈ Q. As we have seen above the condition
∫ Tj

Sj
v(Bs) ds ≤ ε implies

Tj − Sj ≤ 4ε/a2 ≤ ∆t. Thus on Aε
q we have

Sj − Tj−1 ≥ max
(

(kj − kj−1 − 2)∆t, 0
)

=: dj−1 (5.4)

for j = 1, . . . , ℓ− 1, where we use the convention k0 = 0. If kℓ < n then we use 5.4 also for j = ℓ
and we have

t − Tℓ ≥ max
(

(n − kℓ − 2)∆t, 0
)

=: dℓ.

For kℓ = n it will turn out that we need to treat the right endpoint of the interval specially, here
we define dℓ−1 = max

(

(n − kℓ−1 − 3)∆t, 0
)

.
Let δ > 0 and define Dδ

2ℓ+1 as in (3.3). For α ∈ Dδ
2ℓ+1 further define

Aαε
(k1,...,kℓ)

=
{

∫ S1

T0

v(Bs) ds ≤ α1ε,

∫ T1

S1

v(Bs) ds ≤ α2ε, S1 ∈ Ik1
,

...
∫ Sℓ

Tℓ−1

v(Bs) ds ≤ α2ℓ−1ε,

∫ Tℓ

Sℓ

v(Bs) ds ≤ α2ℓε, Sℓ ∈ Ikℓ
,

∫ t

Tℓ

v(Bs) ds ≤ α2ℓ+1ε, Sℓ+1 > t
}

if kℓ < n and

Aαε
(k1,...,kℓ)

=
{

∫ S1

T0

v(Bs) ds ≤ α1ε,

∫ T1

S1

v(Bs) ds ≤ α2ε, S1 ∈ Ik1
,

...
∫ Sℓ

Tℓ−1

v(Bs) ds ≤ α2ℓ−1ε, Sℓ ∈ In, Sℓ+1 > t
}

24



else. Then we have
Aε ∩ {TJ > t} =

⋃

q∈Q

Aε
q ⊆

⋃

q∈Q

⋃

α∈Dδ
2ℓ+1

Aαε
q .

Assume first the case kℓ < n. Then we get

Px

(

Aαε
(k1,...,kℓ)

)

≤ Px

(

∫ T0+d0

T0

B2
s ds ≤ α1ε, T1 − S1 ≤ 4α2ε/a2, S1 ∈ Ik1

,

...
∫ Tℓ−1+dℓ−1

Tℓ−1

B2
s ds ≤ α2ℓ−1ε, Tℓ − Sℓ ≤ 4α2ℓε/a2, Sℓ ∈ Ikℓ

,

∫ Tℓ+dℓ

Tℓ

B2
s ds ≤ α2ℓ+1ε, Sℓ+1 > t

)

.

Now we use the strong Markov property of Brownian motion for the stopping times Sj and Tj .
Because |BTj

| = a/2 and |BSj
| = a are deterministic and the Brownian motion is symmetric we

get

Px

(

Aαε
(k1,...,kℓ)

)

≤ Px

(

∫ T0+d0

T0

B2
s ds ≤ α1ε, T1 − S1 ≤ 4α2ε/a2, S1 ∈ Ik1

,

...
∫ Tℓ−1+dℓ−1

Tℓ−1

B2
s ds ≤ α2ℓ−1ε, Tℓ − Sℓ ≤ 4α2ℓε/a2, Sℓ ∈ Ikℓ

)

P a
2

(

∫ dℓ

0

B2
s ds ≤ α2ℓ+1ε

)

≤ Px

(

∫ T0+d0

T0

B2
s ds ≤ α1ε, T1 − S1 ≤ 4α2ε/a2, S1 ∈ Ik1

,

...
∫ Tℓ−1+dℓ−1

Tℓ−1

B2
s ds ≤ α2ℓ−1ε, Sℓ ∈ Ikℓ

)

P0

(

sup
0≤s≤4α2ℓε/a2

Bs > a/2
)

P a
2

(

∫ dℓ

0

B2
s ds ≤ α2ℓ+1ε

)

.

Repeating these two steps for j = ℓ − 1, . . . , 0 finally gives

Px

(

Aαε
(k1,...,kℓ)

)

≤ Px

(

∫ d0

0

B2
s ds ≤ α1ε

)

ℓ
∏

j=1

P a
2

(

∫ dj

0

B2
s ds ≤ α2j+1ε

)

ℓ
∏

j=1

P0

(

sup
0≤s≤4α2jε/a2

Bs > a/2
)

.

In order to use inequality (3.4) we have to calculate the individual rates for the factors on
the right-hand side. Using lemma 21 we get

lim
ε↓0

ε log sup
x∈R

Px

(

∫ d

0

B2
s ds ≤ ε

)

= −1

8
d2. (5.5)
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Using the reflection principle and the basic scaling property of Brownian motion we find

P0

(

sup
0≤s≤4ε/a2

Bs > a/2
)

= 2P
(

B4ε/a2 > a/2
)

= 2P
(
√

4ε/a2B1 > a/2
)

= 2P
(√

εB1 > a2/4
)

.

The large deviation principle for the standard normal distribution on R now gives

lim
ε↓0

ε log P0

(

sup
0≤s≤4ε/a2

Bs > a/2
)

= −1

2

(

a2/4
)2

= −1

8

(a2

2

)2

. (5.6)

Now we can apply inequality (3.4) to get the combined rate. The result is

lim
ε↓0

ε log sup
x∈R

Px

(

Aαε
(k1,...,kℓ)

)

≤ − 1

1 + δ

1

8

(

ℓ
∑

j=0

dj + n1
a2

4
+ ℓ

a2

2

)2

,

where n1 =
∣

∣

{

j = 1, . . . , ℓ
∣

∣ dj > 0
}
∣

∣. Because each of the intervals [Sj , Tj] can have a non-empty

intersection with at most two of the n intervals Ik we have
∑ℓ

j=0 dj ≥ n − 2J and thus n1 ≥ 1.
So we find

lim
ε↓0

ε log sup
x∈R

Px

(

Aαε
(k1,...,kℓ)

)

≤ − 1

1 + δ

1

8

(n − 2J

n
t +

a2

4
+ ℓ

a2

2

)2

(5.7)

for all α ∈ Dδ
2ℓ+1 and all δ > 0.

Now assume kℓ = n. This case is similar, but needs an additional argument to take care of
the case t ∈ [Sℓ, Tℓ). Here we can no longer use (5.6) for the interval [Sℓ, Tℓ). To work around
this we define a stopping time R by

R = inf
{

s ≥ max(Tℓ−1, (n − 2)∆t)
∣

∣ |Bs| = a/2
}

.

Given the event Aαε
(k1,...,kℓ)

the process cannot have |Bs| > a/2 for a period of time of length ∆t
and using the special definition of dℓ−1 for this case we get Tℓ − 1 + dℓ−1 ≤ R ≤ Sℓ.

Similar to the other case we get then

Px

(

Aαε
(k1,...,kℓ)

)

≤ Px

(

∫ T0+d0

T0

B2
s ds ≤ α1ε, T1 − S1 ≤ 4α2ε/a2, S1 ∈ Ik1

,

...
∫ Tℓ−2+dℓ−2

Tℓ−2

B2
s ds ≤ α2ℓ−3ε,

Tℓ−1 − Sℓ−1 ≤ 4α2ℓ−2ε/a2, Sℓ−1 ∈ Ikℓ−1
,

∫ Tℓ−1+dℓ−1

Tℓ−1

B2
s ds ≤ α2ℓ−1ε, Sℓ − R ≤ 4α2ℓε/a2, Sℓ ∈ In

)

.

Using the strong Markov property for the stopping time R first gives

Px

(

Aαε
(k1,...,kℓ)

)

≤ Px

(

∫ T0+d0

T0

B2
s ds ≤ α1ε, T1 − S1 ≤ 4α2ε/a2, S1 ∈ Ik1

,

...
∫ Tℓ−2+dℓ−2

Tℓ−2

B2
s ds ≤ α2ℓ−3ε,

Tℓ−1 − Sℓ−1 ≤ 4α2ℓ−2ε/a2, Sℓ−1 ∈ Ikℓ−1
,

∫ Tℓ−1+dℓ−1

Tℓ−1

B2
s ds ≤ α2ℓ−1ε

)

P0

(

sup
0≤s≤4α2ℓε/a2

Bs > a/2
)

.
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Now we can continue splitting of terms as in the first case to get

Px

(

Aαε
(k1,...,kℓ)

)

≤ Px

(

∫ d0

0

B2
s ds ≤ α1ε

)

ℓ−1
∏

j=1

P a
2

(

∫ dj

0

B2
s ds ≤ α2j+1ε

)

ℓ
∏

j=1

P0

(

sup
0≤s≤4α2jε/a2

Bs > a/2
)

.

Using equations (5.5), (5.6) and inequality (3.4) as in the first case we get

lim
ε↓0

ε log sup
x∈R

Px

(

Aαε
(k1,...,kℓ)

)

≤ − 1

1 + δ

(

ℓ−1
∑

j=0

dj + n1
a2

4
+ ℓ

a2

2

)2

≤ − 1

1 + δ

1

8

(n − 2J − 1

n
t + ℓ

a2

2

)2

(5.8)

for all α ∈ Dδ
2ℓ+1 and all δ > 0. Note that in this case n1 = 0 is possible, this occurs in the case

ℓ = 1 and S1 ∈ In, because In was the interval we treated specially.

To estimate the upper exponential rate of Aε ∩ {TJ > t} we need to compare all the rates
from (5.7) and (5.8). We get

lim sup
ε↓0

ε log sup
x∈R

Px

(

Aε ∩ {TJ > t}
)

= max
q∈Q

max
α∈Dδ

2ℓ+1

lim sup
ε↓0

ε log Px

(

Aαε
q

)

≤ − 1

1 + δ

1

8

(n − 2J − 1

n
t +

a2

2

)2

for all δ > 0 and large enough n, where the largest bound came from the case ℓ = 1, k1 = n.
Letting first δ ↓ 0 and then n → ∞ shows

lim sup
ε↓0

ε log Px

(

Aε ∩ {TJ > t}
)

≤ 1

8

(

t +
a2

2

)2
. (5.9)

This gives the upper bound for P (Aε). Using the estimates (5.3) and (5.9) we find

lim sup
ε↓0

ε log sup
x∈R

Px(Aε) ≤ 1

8

(

t +
a2

2

)2
.

This completes the proof of the lemma 23.

Lemma 24 For every a > 0 and every x ∈ (−a/
√

2, +a/
√

2) we have

lim
ε↓0

ε logPx

(

∫ t

0

B2
s ds ≤ ε, sup

0≤s≤t
|Bs| ≤ a

)

= lim
ε↓0

ε logPx

(

∫ t

0

B2
s ds ≤ ε

)

= −
(

t + x2
)2

8
.

Proof. The second equality is proved in lemma 20. Applying lemma 23 to the function v(x) = x2

we see that

lim sup
ε↓0

ε logPx

(

∫ t

0

B2
s ds ≤ ε, sup

0≤s≤t
|Bs| > a

)

≤ −1

8

(

t +
1

2
a2

)2

< lim inf
ε↓0

ε logPx

(

∫ t

0

B2
s ds ≤ ε

)

.

Thus we can use lemma 22 to prove the first equality.
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Now we can combine the results of the previous lemmas to give the proofs of proposition 18.

Proof. (of proposition 18) Choose some 0 < δ < |b′(0)|. Using the Taylor formula b(x) =
b′(0)x + o(x) we find an a > 0 with

(

|b′(0)| + δ
)2

x2 ≥ b2(x) ≥
(

|b′(0)| − δ
)2

x2 for all x ∈ [−a, a]. (5.10)

Without loss of generality we may assume that a is smaller than η and also small enough to
permit |b(x)| ≥ a

(

|b′(0)| − δ
)

for all x ∈ R with |x| > a.
We have to calculate the exponential rates of

P
(1

2

∫ t

0

b2(Bs) ds ≤ ε
)

= P
(1

2

∫ t

0

b2(Bs) ds ≤ ε, sup
0≤s≤t

|Bs| ≤ a
)

+ P
(1

2

∫ t

0

b2(Bs) ds ≤ ε, sup
0≤s≤t

|Bs| > a
)

.

(5.11)

Whenever sup0≤s≤t |Bs| ≤ a we can approximate b(x) by b′(0)x as in (5.10). This gives

P
(1

2

∫ t

0

(

|b′(0)| + δ
)2

B2
s ds ≤ ε, sup

0≤s≤t
|Bs| ≤ a

)

≤ P
(1

2

∫ t

0

b2(Bs) ds ≤ ε, sup
0≤s≤t

|Bs| ≤ a
)

≤ P
(1

2

∫ t

0

(

|b′(0)| − δ
)2

B2
s ds ≤ ε, sup

0≤s≤t
|Bs| ≤ a

)

.

Both bounds of this estimate can be handled using

lim
ε↓0

ε log P
(

∫ t

0

cB2
s ds ≤ ε, sup

0≤s≤t
|Bs| ≤ a

)

= −c
t2

8
,

which is a consequence of lemma 24.
For the lower bound this gives

lim inf
ε↓0

ε log P
(1

2

∫ t

0

b2(Bs) ds ≤ ε
)

≥ lim inf
ε↓0

ε log P
(1

2

∫ t

0

b2(Bs) ds ≤ ε, sup
0≤s≤t

|Bs| ≤ a
)

≥ −
(

|b′(0)| + δ
)2

16
t2

whenever δ > 0. For the upper bound we find

lim sup
ε↓0

ε logP
(1

2

∫ t

0

b2(Bs) ds ≤ ε, sup
0≤s≤t

|Bs| ≤ a
)

≤ −
(

|b′(0)| − δ
)2

16
t2. (5.12)

Define v(x) = b2(x)/
(

|b′(0)|−δ
)2

. Then by our choice of a we have v(x) ≥ x2∧a2 and lemma 23
gives

lim sup
ε↓0

ε log P
(1

2

∫ t

0

b2(Bs) ds ≤ ε, sup
0≤s≤t

|Bs| > η
)

≤ lim sup
ε↓0

ε log P
(1

2

∫ t

0

b2(Bs) ds ≤ ε, sup
0≤s≤t

|Bs| > a
)

≤ −1

8

(

t +
1

2
a2

)2

(

|b′(0)| − δ
)2

2

< −
(

|b′(0)| − δ
)2

16
t2.

(5.13)
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Using only the last three lines of equation (5.13) we see that the upper bound for (5.11) is
dominated by (5.12) and from lemma 22 we get

lim sup
ε↓0

ε log P
(1

2

∫ t

0

b2(Bs) ds ≤ ε
)

≤ −
(

|b′(0)| − δ
)2

16
t2

for all δ > 0. Letting δ ↓ 0 completes the proof of

lim
ε↓0

ε logP
(1

2

∫ t

0

b2(Bs) ds ≤ ε
)

= − |b′(0)|2t2
16

.

Utilising lemma 22 again, but this time with the full equation (5.13) also proves the first
equality of the proposition’s claim.

In order to prove proposition 19 we need an additional coupling argument.

Lemma 25 Given x, y ∈ R with |x| ≥ |y| we can choose two Brownian motions Bx and By on
a common probability space with Bx

0 = x, By
0 = y, and |Bx

t | ≥ |By
t | for all t ≥ 0.

Proof. Let Bx be any Brownian motion with start in x and B be another one on the same
probability space, but with start in y. Define the stopping time T by

T = inf
{

t ≥ 0
∣

∣ |Bx
t | = |Bt|

}

and the random variable σ by σ = 1 if Bx
T = BT and σ = −1 else. Then the process By defined

by

By
t =

{

Bt if t ≤ T , and

BT + σ(Bx
t − Bx

T ) if t > T

is a Brownian motion with |By
t | < |Bx

t | for t < T and either By
t = Bx

t or By
t = −Bx

t for t ≥ T .
This proves the claim.

Proof. (of proposition 19) We start by proving the claim about the lim inf . Using proposition 18
we find

lim inf
ε↓0

ε log inf
−ζ<z<ζ

Pz

(1

2

∫ t

0

b2(Bs) ds ≤ ε, sup
0≤s≤t

|Bs| ≤ η
)

≤ lim
ε↓0

ε log P0

(1

2

∫ t

0

b2(Bs) ds ≤ ε, sup
0≤s≤t

|Bs| ≤ η
)

= − |b′(0)|2t2
16

for every ζ > 0.
Now let κ > 0 and choose a δ > 0 with

−
(

|b′(0)| + δ
)2 (t + δ2)2

16
> − |b′(0)|2t2

16
− κ.

As in the proof of proposition 18 we can use Taylor approximation to find an a > 0 with

b2(x) ≤
(

|b′(0)| + δ
)2

x2

for all x ∈ [−a, a]. Without loss of generality we may assume a ≤ min(2δ, η).
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Let ζ < a/2 and z ∈ [−ζ, +ζ]. Then we can use lemma 25 to choose two Brownian motions

Bζ and Bz with Bζ
0 = ζ, Bz

0 = z, and |Bζ
t | ≥ |Bz

t | for all t ≥ 0. We find

P
(1

2

∫ t

0

b2(Bz
s ) ds ≤ ε, sup

0≤s≤t
|Bz

s | ≤ η
)

≥ P
(1

2

∫ t

0

b2(Bz
s ) ds ≤ ε, sup

0≤s≤t
|Bz

s | ≤ a
)

≥ P
(1

2

∫ t

0

(

|b′(0)| + δ
)2

(Bz
s )2 ds ≤ ε, sup

0≤s≤t
|Bz

s | ≤ a
)

≥ P
(1

2

∫ t

0

(

|b′(0)| + δ
)2

(Bζ
s )2 ds ≤ ε, sup

0≤s≤t
|Bζ

s | ≤ a
)

for every z ∈ [−ζ, +ζ], and thus

lim inf
ε↓0

ε log inf
−ζ<z<ζ

Pz

(1

2

∫ t

0

b2(Bs) ds ≤ ε, sup
0≤s≤t

|Bs| ≤ η
)

≥ lim inf
ε↓0

ε log Pζ

(1

2

∫ t

0

(

|b′(0)| + δ
)2

B2
s ds ≤ ε, sup

0≤s≤t
|Bs| ≤ a

)

=
1

2

(

|b′(0)| + δ
)2

lim inf
ε↓0

ε log Pζ

(

∫ t

0

B2
s ds ≤ ε, sup

0≤s≤t
|Bs| ≤ a

)

.

Because ζ < a/2 < δ we can use lemma 24 to get

lim inf
ε↓0

ε log inf
−ζ<z<ζ

Pz

(1

2

∫ t

0

b2(Bs) ds ≤ ε, sup
0≤s≤t

|Bs| ≤ η
)

≥ −1

2

(

|b′(0)| + δ
)2 (t + ζ2)2

8

≥ −1

2

(

|b′(0)| + δ
)2 (t + δ2)2

8

> − |b′(0)|2t2
16

− κ

for all sufficiently small κ > 0. Letting ζ ↓ 0 completes the proof of the first claim.
For the second claim first note that

lim sup
ε↓0

ε log sup
y∈R

Py

(1

2

∫ t

0

b2(Bs) ds ≤ ε, sup
0≤s≤t

|Bs| ≤ η
)

≥ lim sup
ε↓0

ε log P0

(1

2

∫ t

0

b2(Bs) ds ≤ ε, sup
0≤s≤t

|Bs| ≤ η
)

= − |b′(0)|2t2
16

,

again by proposition 18.
Let κ > 0 and choose δ > 0 with

−
(

|b′(0)| − δ
)2 t2

16
< − |b′(0)|2t2

16
+ κ.

Using Taylor approximation we can find an a > 0 with

b2(x) ≥
(

|b′(0)| − δ
)2

x2

for all x ∈ [−a, a] and by choosing a small enough we can find a smooth, antisymmetric, monotone
function ϕ : R → R with |b(x)| ≥ |ϕ(x)| for all x ∈ R and ϕ′(0) = |b′(0)| − δ.
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Using the coupling argument and proposition 18 again, we get

lim sup
ε↓0

ε log sup
y∈R

Py

(1

2

∫ t

0

b2(Bs) ds ≤ ε, sup
0≤s≤t

|Bs| ≤ η
)

≤ lim sup
ε↓0

ε log sup
y∈R

Py

(1

2

∫ t

0

ϕ2(Bs) ds ≤ ε, sup
0≤s≤t

|Bs| ≤ η
)

≤ lim sup
ε↓0

ε log P0

(1

2

∫ t

0

ϕ2(Bs) ds ≤ ε, sup
0≤s≤t

|Bs| ≤ η
)

= −
(

|b′(0)| − δ
)2

t2

16

< − |b′(0)|2t2
16

+ κ

for all κ > 0. Taking the limit κ ↓ 0 completes the proof of proposition 19.

6 The LDP for the Endpoint

In this section we use the results of the previous section to complete the proof of theorem 1.

Notation. To avoid complicated and hard to read expressions in small print we sometimes write
(A) for the indicator function of the event A during this section.

Lemma 26 Let Φ: R → R be a C2-function with bounded Φ′′ and let b = −Φ′. Assume that
there is an m ∈ R with b(x) = 0 if and only if x = m and lim inf |x|→∞ |b(x)| > 0. Further
assume that there is a rate function I : R → [0,∞] with

lim inf
ϑ→∞

1

ϑ
log E

(

exp(−ϑ2

2

∫ t

0

b2(ωs) ds)1O(Bt)
)

≥ − inf
x∈O

I(x)

for every open set O ⊆ R and

lim sup
ϑ→∞

1

ϑ
log E

(

exp(−ϑ2

2

∫ t

0

b2(ωs) ds)1K(Bt)
)

≤ − inf
x∈K

I(x)

for every compact set K ⊆ R. For ϑ > 0 let Xϑ be a solution of the SDE (1.1) with start in
Xϑ

0 = 0. Then for ϑ → ∞ the family (Xϑ
t )ϑ satisfies the weak LDP with rate function J , where

J is defined by

J(x) = Φ(x) − Φ(0) − 1

2
tΦ′′(m) + I(x).

Proof. First let O be open, x ∈ O and δ > 0. Then we can find an η with 0 < η < δ, Bη(x) ⊆ O,
and |Φ(y) − Φ(x)| ≤ δ for all y ∈ Bη(x). Define

F ∗(x) = Φ(0) − Φ(x) +
1

2
tΦ′′(m).
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Let F and G be as in (3.1). Then we find

lim inf
ϑ→∞

1

ϑ
log P (Xϑ

t ∈ O)

≥ lim inf
ϑ→∞

1

ϑ
log P (Xϑ

t ∈ Bη(x))

= lim inf
ϑ→∞

1

ϑ
log

∫

1Bη(x)(ωt) exp
(

ϑF (ω) − ϑ2G(ω)
)

dW(ω)

≥ lim inf
ϑ→∞

1

ϑ
log

∫

1Bη(x)(ωt) exp
(

ϑ(F ∗(x) − 2δ) − ϑ2G(ω)
)

(

|F (ω) − F ∗(x)| ≤ 2δ
)

dW(ω)

= F ∗(x) − 2δ + lim inf
ϑ→∞

1

ϑ
log

∫

1Bη(x)(ωt) exp
(

−ϑ2G(ω)
)

(

|F (ω) − F ∗(x)| ≤ 2δ
)

dW(ω).

By definition of F ∗(x) we have

∣

∣F (ω) − F ∗(x)
∣

∣ =
∣

∣Φ(0) − Φ(ωt) +
1

2

∫ t

0

Φ′′(ωs) ds

− Φ(0) + Φ(x) − 1

2
tΦ′′(m)

∣

∣

≤
∣

∣Φ(x) − Φ(ωt)
∣

∣ +
1

2

∫ t

0

∣

∣Φ′′(ωs) − Φ′′(m)
∣

∣ ds.

Thus whenever ωt ∈ Bη(x) and
∣

∣F (ω) − F ∗(x)
∣

∣ ≥ 2δ we find

1

2

∫ t

0

∣

∣Φ′′(ωs) − Φ′′(m)
∣

∣ ds ≥ 2δ − δ = δ.

Because Φ′′ is bounded the above estimate implies that we can find an ε > 0 with

∣

∣

∣

{

s ∈ [0, t]
∣

∣ |ωs − m| ≥ δ/t
}

∣

∣

∣
> ε

for all paths ω with ωt ∈ Bη(x) and
∣

∣F (ω) − F ∗(x)
∣

∣ ≥ 2δ. Because m is the only zero of b and
because lim inf |x|→∞ |b(x)| > 0 we have

inf
{

b2(x)
∣

∣ |x − m| ≥ δ/t
}

> 0,

i.e. we can find a g > 0 with G(ω) > g for all paths ω with ωt ∈ Bη(x) and
∣

∣F (ω)−F ∗(x)
∣

∣ ≥ 2δ.
Together this gives

lim sup
ϑ→∞

1

ϑ
log

∫

1Bη(x)(ωt) exp
(

−ϑ2G(ω)
)

(|F (ω) − F ∗(x)| > 2δ) dW(ω)

≤ lim sup
ϑ→∞

1

ϑ
log

∫

exp
(

−ϑ2g
)

dW(ω)

= −∞.

So we can use lemma 22 to conclude

lim inf
ϑ→∞

1

ϑ
log

∫

1Bη(x)(ωt) exp
(

−ϑ2G(ω)
)

dW(ω)

= lim inf
ϑ→∞

1

ϑ
log

∫

1Bη(x)(ωt) exp
(

−ϑ2G(ω)
)

(|F (ω) − F ∗(x)| ≤ 2δ) dW(ω)
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and get

lim inf
ϑ→∞

1

ϑ
log P (Xϑ

t ∈ O)

≥ F ∗(x) − 2δ + lim inf
ϑ→∞

1

ϑ
log

∫

1Bη(x)(ωt) exp
(

−ϑ2G(ω)
)

dW(ω)

≥ F ∗(x) − 2δ − inf
y∈Bη(x)

I(y)

≥ F ∗(x) − 2δ − I(x)

for all δ > 0. Letting δ ↓ 0 gives

lim inf
ϑ→∞

1

ϑ
log P (Xϑ

t ∈ O) ≥ F ∗(x) − I(x)

and taking the supremum over all x ∈ O on the right hand side proves the lower bound.

Now let K ⊆ R be compact and δ > 0. For each x ∈ K we can find an η > 0 with
|Φ(y) − Φ(x)| ≤ δ whenever y ∈ Bη(x). Because I is lower semi-continuous we can assume
I(y) ≥ I(x)−δ for every y ∈ Bη(x) by choosing η small enough. Using the compactness of K we
can cover K with a finite number of such balls: there are x1, . . . , xn ∈ K and 0 < η1, . . . , ηn < δ
with

K ⊆
n
⋃

k=1

Bηk
(xk)

and the above assumption on Φ and I hold for each k. For k = 1, . . . , n consider F ∗(xk) as
defined above. This time we find

lim sup
ϑ→∞

1

ϑ
log P (Xϑ

t ∈ K)

≤ lim sup
ϑ→∞

1

ϑ
log

n
∑

k=1

P (Xϑ
t ∈ Bηk

(xk))

= max
k=1,...,n

lim sup
ϑ→∞

1

ϑ
log

∫

1Bηk
(xk)(ωt) exp

(

ϑF (ω) − ϑ2G(ω)
)

dW(ω).

Because F is bounded on {ωt ∈ Bηk
(xk)} we can use lemma 22 as above to conclude

lim sup
ϑ→∞

1

ϑ
log

∫

1Bηk
(xk)(ωt) exp

(

ϑF (ω) − ϑ2G(ω)
)

dW(ω)

= lim sup
ϑ→∞

1

ϑ
log

∫

1Bηk
(xk)(ωt) exp

(

ϑF (ω) − ϑ2G(ω)
)

(|F (ω) − F ∗(xk)| ≤ 2δ) dW(ω)

for k = 1, . . . , n. This gives

lim sup
ϑ→∞

1

ϑ
log P (Xϑ

t ∈ K)

≤ max
k=1,...,n

lim sup
ϑ→∞

1

ϑ
log

∫

1Bηk
(xk)(ωt) exp

(

ϑF (ω) − ϑ2G(ω)
)

(|F (ω) − F ∗(xk)| ≤ 2δ) dW(ω)

≤ max
k=1,...,n

lim sup
ϑ→∞

1

ϑ
log

∫

1Bηk
(xk)(ωt) exp

(

ϑ(F ∗(xk) + 2δ) − ϑ2G(ω)
)

(

|F (ω) − F ∗(xk)| ≤ 2δ
)

dW(ω)

≤ max
k=1,...,n

F ∗(xk) + 2δ

+ lim sup
ϑ→∞

1

ϑ
log

∫

1Bηk
(xk)(ωt) exp

(

−ϑ2G(ω)
)

dW(ω).
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Now we can use the upper bound on the rate of the integral and our choice of ηk to get

lim sup
ϑ→∞

1

ϑ
log P (Xϑ

t ∈ K)

≤ max
k=1,...,n

F ∗(xk) + 2δ − inf
y∈Bδ(xk)

I(y)

≤ max
k=1,...,n

F ∗(xk) + 2δ − I(xk) + δ.

and letting δ ↓ 0 completes the proof.

The following lemma is a generalisation of lemma 20. It helps to determine the rate function I
which is needed to apply lemma 26.

Lemma 27 Let b : R → R be a C2-function with lim inf |x|→∞ |b(x)| > 0. Assume that there is
an m ∈ R with b(x) = 0 if and only if x = m and with b′(m) 6= 0. Then for any compact set
K ⊆ R we have

lim sup
ε→0

ε logP
(1

2

∫ t

0

b2(Bs) ds ≤ ε, Bt ∈ K
)

≤ −1

4
inf
a∈K

(

∣

∣

∫ m

0

|b(x)| dx
∣

∣ +
1

2
|b′(m)|t +

∣

∣

∫ a

m

|b(x)| dx
∣

∣

)2

and for any open set O ⊆ R we have

lim inf
ε→0

ε log P
(1

2

∫ t

0

b2(Bs) ds ≤ ε, Bt ∈ O
)

≥ −1

4
inf
a∈O

(

∣

∣

∫ m

0

|b(x)| dx
∣

∣ +
1

2
|b′(m)|t +

∣

∣

∫ a

m

|b(x)| dx
∣

∣

)2

.

Proof. As an abbreviation define v(x) = b2(x)/2 for all x ∈ R. For the proof of the upper
bound choose a compact set K, let δ, τ > 0 and choose Dδ

3 as in (3.3). Then for ε < t/2τ we
have

{

∫ t

0

v(Bs) ds ≤ ε, Bt ∈ K
}

⊆
⋃

α∈Dδ
3

{

∫ ετ

0

v(Bs) ds ≤ α1ε,

∫ t−ετ

ετ

v(Bs) ds ≤ α2ε,

∫ t

t−ετ

v(Bs) ds ≤ α3ε, Bt ∈ K
}

.

Writing (A) for the indicator function of A and using the strong Markov property of Brownian
motion this gives

P
(

∫ t

0

v(Bs) ds ≤ ε, Bt ∈ K
)

≤
∑

α∈Dδ
3

E
(

(
∫ ετ

0
v(Bs) ds ≤ α1ε)(

∫ t−ετ

ετ
v(Bs) ds ≤ α2ε)

E
(

(
∫ t

t−ετ v(Bs) ds ≤ α3ε, Bt ∈ K)
∣

∣ Ft−ετ

)

)

=
∑

α∈Dδ
3

E
(

(
∫ ετ

0
v(Bs) ds ≤ α1ε)(

∫ t−ετ

ετ
v(Bs) ds ≤ α2ε)

EBt−ετ

(

(
∫ ετ

0 v(Bs) ds ≤ α3ε, Bετ ∈ K)
)

)

=:
∑

α∈Dδ
3

p(α, ε)
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Now let α ∈ Dδ
3 be fixed and a > 0. We split the corresponding event further by distinguishing

the two cases
{

supετ≤s≤t−ετ |Bs − m| > a
}

and
{

supετ≤s≤t−ετ |Bs − m| ≤ a
}

. Since omitting
some conditions makes the probability only larger, we get

p(α, ε) ≤ p1(α, ε) + p2(α, ε)

with

p1(α, ε) = sup
y∈R

Py

(

∫ t−2ετ

0

v(Bs) ds ≤ α2ε, sup
0≤s≤t−2ετ

|Bs − m| > a
)

and

p2(α, ε) = P
(

∫ ετ

0

v(Bs) ds ≤ α1ε, |Bετ − m| ≤ a
)

sup
y∈R

Py

(

∫ t−2ετ

0

v(Bs) ds ≤ α2ε, sup
0≤s≤t−2ετ

|Bs − m| ≤ a
)

sup
|z−m|≤a

Pz

(

∫ ετ

0

v(Bs) ds ≤ α3ε, Bετ ∈ K
)

.

To calculate the rate for the sum p1(α, ε) + p2(α, ε) we have to calculate the rates of the
individual terms. Let η > 0. For p1 we can use lemma 23 to get

lim sup
ε→0

ε log p1(α, ε)

≤ lim sup
ε→0

ε log sup
|y−m|<a/2

Py

(

∫ t−η

0

v(Bs) ds ≤ α2ε, sup
0≤s≤t−η

|Bs − m| > a
)

,

≤ − 1

8α2

(

t − η +
1

2
a2

)2

.

Since for fixed η this rate become arbitrarily negative when a becomes large, we can choose a
large enough that the rate of p1(α, ε) + p2(α, ε) is dominated by p2.

To treat the p2-term we apply inequality (3.4) as we did in the proof of proposition 6. From
proposition 7 we know the individual rates

lim sup
ε→0

ε logP
(

∫ ετ

0

v(Bs) ds ≤ ε, |Bετ − m| ≤ a
)

≤ −1

4

(

∫ m

0

|b(x)| dx
)2

r2
1(τ)

and

lim sup
ε→0

ε log sup
|z−m|≤a

Pz

(

∫ ετ

0

v(Bs) ds ≤ ε, Bετ ∈ K
)

≤ −1

4
inf

a∈K

(

∫ a

m

|b(x)| dx
)2

r2
2(τ)

where limτ→∞ r1(τ) = limτ→∞ r2(τ) = 1, and proposition 19 gives

lim sup
ε→0

ε log sup
y∈R

Py

(

∫ t−2ετ

0

v(Bs) ds ≤ ε, sup
0≤s≤t−2ετ

|Bs − m| ≤ a
)

≤ lim sup
ε→0

ε log sup
|y−m|<a/2

Py

(

∫ t−η

0

v(Bs) ds ≤ ε, sup
0≤s≤t−η

|Bs − m| ≤ a
)

≤ −|b′(m)|2(t − η)2

16
.
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Using inequality (3.4) we get the combined rate

lim sup
ε→0

ε log p2(α, ε)

≤ − 1

1 + δ

(1

2

∣

∣

∫ m

0

|b(x)| dx
∣

∣r1(τ)

+
1

4
|b′(m)|(t − η) +

1

2
inf

a∈K

∣

∣

∫ a

m

|b(x)| dx
∣

∣r2(τ)
)2

for all α ∈ Dδ
3.

The rate for the sum over all α ∈ Dδ
3 is the maximum of the individual rates. The result is

lim sup
ε→0

ε log P
(

∫ t

0

v(Bs) ds ≤ ε, Bt ∈ K
)

≤ − 1

1 + δ

(1

2

∣

∣

∫ m

0

|b(x)| dx
∣

∣r1(τ)

+
1

4
|b′(m)|(t − η) +

1

2
inf

a∈K

∣

∣

∫ a

m

|b(x)| dx
∣

∣r2(τ)
)2

for all η > 0, δ > 0, and τ > 0. Letting finally τ → ∞, δ ↓ 0, and η ↓ 0 gives

lim sup
ε→0

ε log P
(1

2

∫ t

0

b2(Bs) ds ≤ ε, Bt ∈ K
)

≤ −1

4

(1

2

∣

∣

∫ m

0

|b(x)| dx
∣

∣ +
1

2
|b′(m)|t + inf

a∈K

∣

∣

∫ a

m

|b(x)| dx
∣

∣

)2

.

This proves the upper bound.

For the lower bound: Let ζ, η, τ > 0 and α1, α2, α3 ∈ R with α1 + α2 + α3 = 1. Then for
ε < t/2τ we have

{

∫ t

0

v(Bs) ds ≤ ε, Bt ∈ O
}

⊇
{

∫ ετ

0

v(Bs) ds ≤ α1ε, |Bετ − m| < ζ
}

∩
{

∫ t−ετ

ετ

v(Bs) ds ≤ α2ε, |Bt−ετ − m| < η
}

∩
{

∫ t

t−ετ

v(Bs) ds ≤ α3ε, Bt ∈ O
}

and thus we get

P
(

∫ t

0

v(Bs) ds ≤ ε, Bt ∈ O
)

≥ E
(

(

∫ ετ

0

v(Bs) ds ≤ α1ε, |Bετ − m| < ζ
}

)

(

∫ t−ετ

ετ

v(Bs) ds ≤ α2ε, |Bt−ετ − m| < η
)

E
(

(

∫ t

t−ετ

v(Bs) ds ≤ α3ε, Bt ∈ O
)

∣

∣

∣
Ft−ετ

))

≥ E
(

(

∫ ετ

0

v(Bs) ds ≤ α1ε, |Bετ − m| < ζ
)

E
(

(

∫ t−ετ

ετ

v(Bs) ds ≤ α2ε, |Bt−ετ − m| < η
)

∣

∣

∣
Fετ

))

inf
m−η<y<m+η

Py

(

∫ ετ

0

v(Bs) ds ≤ α3ε, Bετ ∈ O
)
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≥ P0

(

∫ ετ

0

v(Bs) ds ≤ α1ε, Bετ ∈ (m − ζ, m + ζ)
)

inf
m−ζ<z<m+ζ

Pz

(

∫ t−2ετ

0

v(Bs) ds ≤ α2ε, |Bt−2ετ − m| < η
)

inf
m−η<y<m+η

Py

(

∫ ετ

0

v(Bs) ds ≤ α3ε, Bετ ∈ O
)

.

First take lower exponential rates for ε ↓ 0. The lower exponential rate of the left-hand side
is greater or equal to the sum of the lower rates of the right-hand side. This inequality holds for
all η, τ > 0 and α1, α2, α3 ∈ R with α1 + α2 + α3 = 1.

Then let τ → ∞. We treat the three terms on the right hand side individually. First term:
from Lemma 5.1 we know

lim
τ→∞

lim inf
ε↓0

ε logP0

(

∫ ετ

0

v(Bs) ds ≤ α1ε, Bετ ∈ (m − ζ, m + ζ)
)

≥ − 1

α1

1

4
inf

m−ζ<a<m+ζ

(

∣

∣

∫ m

0

|b(x)| dx
∣

∣ +
∣

∣

∫ a

m

|b(x)| dx
∣

∣

)2

= − 1

α1

1

4

(

∣

∣

∫ m

0

|b(x)| dx
∣

∣

)2

r1(ζ)

where limζ↓0 r1(ζ) = 1.
Second term: we can make the probability smaller by replacing t − 2ετ with t. Then the

term is no longer τ -dependent and using proposition 19 we get

lim inf
ε↓0

ε log inf
m−ζ<z<m+ζ

Pz

(

∫ t−2ετ

0

v(Bs) ds ≤ α2ε, |Bt−2ετ − m| < η
)

)

≥ − 1

α2

|b′(m)|2
16

t2r2(ζ)

where limζ↓0 r2(ζ) = 1.
Third term: using corollary 10 we get

lim inf
ε↓0

ε log inf
m−η<y<m+η

Py

(

∫ ετ

0

v(Bs) ds ≤ α3ε, Bετ ∈ O
)

≥ − 1

α3

1

4
inf
a∈O

(

∫ a

m

|b(x)| dx
)2

r3(η)

where limη↓0 r3(η) = 1.
Combining the three rates we get

lim inf
ε↓0

ε log P
(

Bt ∈ O,

∫ t

0

v(Bs) ds ≤ ε
)

≥ − 1

α1

1

4

(

∣

∣

∫ m

0

|b(x)| dx
∣

∣

)2

r1(ζ)

− 1

α2

|b′(m)|2
16

t2r2(ζ)

− 1

α3

1

4
inf
a∈O

(

∣

∣

∫ a

m

|b(x)| dx
∣

∣

)2

r3(η).
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and letting first ζ ↓ 0 and then η ↓ 0 yields

lim inf
ε↓0

ε log P
(

Bt ∈ O,

∫ t

0

v(Bs) ds ≤ ε
)

≥ − 1

α1

(1

2

∫ m

0

|b(x)| dx
)2

− 1

α2

( |b′(m)|
4

t
)2

− 1

α3

(1

2
inf
a∈O

∫ a

m

|b(x)| dx
)2

for all α1, α2, α3 ∈ R with α1 + α2 + α3 = 1.
Choosing optimal α1, α2, and α3 as in (3.4) we get

lim inf
ε↓0

ε logP
(

Bt ∈ O,
1

2

∫ t

0

b2(Bs) ds ≤ ε
)

≥ −
(1

2

∣

∣

∫ m

0

|b(x)| dx
∣

∣ +
|b′(m)|

4
t +

1

2
inf
a∈O

∣

∣

∫ a

m

|b(x)| dx
∣

∣

)2

= −1

4

(

∣

∣

∫ m

0

|b(x)| dx
∣

∣ +
|b′(m)|

2
t + inf

a∈O

∣

∣

∫ a

m

|b(x)| dx
∣

∣

)2

.

This completes the proof.

Proof. (of theorem 1) Since the rate function Jt is invariant under space shifts we can without
loss of generality assume z = 0 by replacing Φ with the shifted function Φ( · + z) and starting
the SDE in 0. Since most of the work was already done, the proof consists only of three steps.

First define

H(x) =
1

4

(

∣

∣

∫ m

0

|b(y)| dy
∣

∣ +
1

2
|b′(m)|t +

∣

∣

∫

[m,x]

|b(y)| dy
∣

∣

)2

=
1

4

(

V m
0 (Φ) +

1

2
|b′(m)|t + V x

m(Φ)
)2

and v(x) = b2(x)/2 for all y ∈ R. From lemma 27 we know that for every compact set K ⊆ R

we have

lim sup
ε→0

ε log P
(

∫ t

0

v(Bs) ds ≤ ε, Bt ∈ K
)

≤ − inf
a∈K

H(a)

and for every open set O ⊆ R we have

lim inf
ε→0

ε log P
(

∫ t

0

v(Bs) ds ≤ ε, Bt ∈ O
)

≥ − inf
a∈O

H(a).

Second, let

I(x) = 2
√

H(x) = V m
0 (Φ) +

1

2
|b′(m)|t + V x

m(Φ)

for all x ∈ R. Then for every set A ⊆ R we find

−2

√

∣

∣− inf
x∈A

H(x)
∣

∣ = −2
√

inf
x∈A

H(x) = − inf
x∈A

I(x)

and the Tauberian theorem 5 allows us to conclude

lim sup
ϑ→∞

1

ϑ
log E

(

exp(−ϑ2

∫ t

0

v(ωs) ds)1K(Bt)
)

≤ − inf
x∈K

I(x)

for every compact set K ⊆ R and

lim inf
ϑ→∞

1

ϑ
log E

(

exp(−ϑ2

∫ t

0

v(ωs) ds)1O(Bt)
)

≥ − inf
x∈O

I(x)
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for every open set O ⊆ R.
Finally we can use lemma 26 to conclude that the family (Xϑ

t )ϑ>0 satisfies the weak LDP
with rate function

Jt(x) = Φ(x) − Φ(0) − 1

2
tΦ′′(m) + I(x)

= Φ(x) − Φ(0) + V m
0 (Φ) + t(Φ′′(m))− + V x

m(Φ).

This completes the proof of theorem 1.
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