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Ratcliff (1978; Ratcliff & Tuerlinckx, 2002; Ratcliff,
Van Zandt, & McKoon, 1999) has proposed the diffusion
model as a form of data analysis for speeded binary de-
cisions. The diffusion model assumes that binary deci-
sions are based on a continuous process that fluctuates
between two possible outcomes (Figure 1). As soon as
the process reaches a critical upper or lower value, a de-
cision is made, and the corresponding response is exe-
cuted. One main advantage of the diffusion model is that
different components of the decision process (rate of in-
formation uptake, bias, conservatism, and motor compo-
nent) are represented by different parameters of the model.
Theoretically, distinct aspects of the decision process can
be separated statistically. In a sense, the model allows in-
ferences regarding hidden cognitive processes. Another
advantage of the diffusion model data analysis is the high
degree of information utilization. In contrast to conven-
tional forms of data analysis, the diffusion model incor-
porates response times (RTs) for correct responses and er-
rors, as well as the ratio of correct and erroneous responses.

The diffusion model thus provides a powerful statisti-
cal tool that allows a very fine-grained analysis of the

cognitive processes underlying simple response tasks.
Previous applications of the diffusion model have in-
cluded, for example, the analysis of retrieval processes
(Ratcliff, 1978, 1988) and the identification of the fac-
tors underlying age-related slowing (Ratcliff, Spieler, &
McKoon, 2000; Ratcliff, Thapar, & McKoon, 2001, 2003).
These examples reveal that the diffusion model has a
wide range of possible applications and can be used to
decide between competing theoretical interpretations of
experimental findings. However, although interpreta-
tions of the different parameters of the diffusion model
seem fairly straightforward, it should be kept in mind
that these interpretations are based mainly on theoretical
reflections and presuppose the validity of the diffusion
model as an adequate representation of the underlying
cognitive processes.1 The main aim of the present article,
therefore, is to provide an empirical validation of the the-
oretical interpretation of the parameters of the diffusion
model. To this end, we investigated the effects of differ-
ent experimental manipulations on the parameter set in a
diffusion model data analysis. The experimental manip-
ulations were intended to specifically affect the different
processing components of the model (rate of information
uptake, setting of response criteria, duration of the motor
response and bias; see Ratcliff, 2002; Ratcliff & Rouder,
1998; Ratcliff et al., 2001). Analyzing whether experi-
mental manipulations of the different processing com-
ponents that are specified in the model map uniquely
onto the corresponding parameters of the model (and not
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The diffusion model (Ratcliff, 1978) allows for the statistical separation of different components of
a speeded binary decision process (decision threshold, bias, information uptake, and motor response).
These components are represented by different parameters of the model. Two experiments were con-
ducted to test the interpretational validity of the parameters. Using a color discrimination task, we in-
vestigated whether experimental manipulations of specific aspects of the decision process had specific
effects on the corresponding parameters in a diffusion model data analysis (see Ratcliff, 2002; Ratcliff
& Rouder, 1998; Ratcliff, Thapar, & McKoon, 2001, 2003). In support of the model, we found that (1) de-
cision thresholds were higher when we induced accuracy motivation, (2) drift rates (i.e., information
uptake) were lower when stimuli were harder to discriminate, (3) the motor components were in-
creased when a more difficult form of response was required, and (4) the process was biased toward
rewarded responses.
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onto others) is a strong empirical test of the model’s va-
lidity. Some of these manipulations have been used in a
similar manner by others (e.g., Ratcliff, 2002; Ratcliff &
Rouder, 1998; Ratcliff et al., 2001, 2003). In the present
article, however, a somewhat different focus is adopted
by addressing two fundamental points: First, all the im-
portant parameters of the diffusion model are validated
within the same paradigm, and second, the question of
validation is separated from other research questions
(e.g., age-related changes in information processing);
this separation allows for clear interpretation of the ex-
perimental results.

A second objective of this article—next to the valida-
tion of the model parameters—is to introduce a new
method of estimating the parameters of the diffusion
model based on the Kolmogorov–Smirnov (KS) test
(Kolmogorov, 1941). This approach is an alternative to
the more established methods (i.e., maximum likelihood,
chi-square, and weighted least square; see Ratcliff &
Tuerlinckx, 2002, for a detailed discussion of the differ-
ent algorithms). The KS statistic also provides a test of
the model fit.

In the following, we first will give a brief overview of
the rationale of the diffusion model. In a second step, we
will describe our estimating algorithm and the new model
test. Finally, we will report two experiments with a sim-
ple color classification task in which the effects of dif-
ferent experimental manipulations on the parameter set
of the diffusion model were investigated. Mathematical
details of the diffusion model are given in the Appendix.

THE RATIONALE OF THE
DIFFUSION MODEL

The diffusion model assumes that binary decision pro-
cesses are driven by systematic and random influences.
The systematic influences are called the drift rate. They
“drive” the process continuously in one direction, while the
random influences add an erratic fluctuation to this con-
stant path. The process is terminated immediately when
one of two thresholds is reached. In a psychological appli-
cation, this means that the decision process is finished and
the response system is being activated, which will initiate
the corresponding response (e.g., a keypress). With a given
set of parameters, the model predicts distributions of pro-
cess durations (i.e., RTs) for the two possible outcomes of
the process. Figure 1 provides a schematic illustration of
the model: The process begins at the starting point z and
moves over time until it reaches the lower threshold at zero
or the upper threshold at a. Then the corresponding re-
sponse is executed immediately. In Figure 1, a sample path
of the process is presented. As can be seen, this path is not
straight but oscillates between the two boundaries, due to
random influences (i.e., the intratrial variability of the
path) on the process.

Applied to a perceptual situation in which participants
have to categorize ambiguous stimuli, the process de-
scribes the ratio of information gathered that fosters each
of the two possible stimulus interpretations. Information
is collected over time until evidence points with suffi-
cient clearness to one interpretation; then a response is
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Figure 1. Schematic illustration of the diffusion model. The process starts at point z and
moves over time until it reaches the lower threshold at 0 or the upper threshold at a. De-
pending on which threshold is reached, different responses are initiated. The erratic line gives
an example of one process that reaches the upper threshold at time ti . The mean deviance of
single paths from the mean path is defined by an additional (scaling) parameter of the model
(i.e., the diffusion constant s). Outside the thresholds, the distributions of process durations
for a constant set of parameters are sketched. Note that the lower limit can be reached with
random influences, although the distributions shown are based on a positive drift rate.
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initiated. As was mentioned above, there are random in-
fluences that cause variance in the RT distributions and
also generate erroneous responses in some trials. For ex-
ample, the different sizes of the shaded areas that are
constituted by the time distributions in Figure 1 denote
that in most cases, the process reaches the upper thresh-
old, indicating a positive drift rate. Nonetheless, in some
trials, the random influences outweigh the drift, and the
process terminates at the lower threshold.

Parameters of the Diffusion Model
The model is defined by a set of parameters (see

Table 1), which will be described in the following sec-
tion: The upper threshold (a), which is also the distance
between both limits, has already been introduced. This
parameter is interpreted as a measure of conservatism: A
large value of a indicates that the process takes more
time to reach one limit and that it will reach the limit op-
posite to the drift less frequently. The second parameter
is the starting point (z), or bias. This parameter reflects
differences in the amount of information that is required
before the alternative responses are initiated. If z exceeds
a/2, a smaller (relative) amount of information support-
ing Interpretation A is needed to give Response A, as
compared with a larger (relative) amount of information
supporting Interpretation B that is required before Re-
sponse B is executed. In other words, participants are
more liberal in giving the answer connected to the upper
threshold (Response A) and more conservative in giving
the opposite response (Response B). If z is smaller than
a/2, the contrary is true. If z diverges from a/2, the aver-
age decision times will differ for the different responses:
The smaller the distance between the starting point and
the limit, the shorter the process durations will be for the
corresponding responses.

The third parameter of the diffusion model is the drift
rate (v), which stands for the mean rate of approach to
the upper threshold (negative values indicate an approach
to the lower threshold). The drift rate indicates the rela-
tive amount of information per time unit that is absorbed.
Therefore, the drift can be interpreted as a measure of
perceptual sensitivity (in a between-person comparison)
or as a measure of task difficulty (in a between-condition
comparison). The path of the process is also influenced
by (normally distributed) random influences (i.e., the
noise in the model). The amount of the random influ-
ences is given by the diffusion constant (s), which is a

scaling parameter. This means that s is not a free param-
eter to be estimated but has to be fixed to any (positive)
constant value. In the Appendix, the mathematical defi-
nition of the diffusion model is presented.

If the diffusion model is used to analyze RT data, it is
important to note that the decision process constitutes
only one component of the RTs measured. The other
component consists of motor processes of the response
system and of encoding processes preceding the deci-
sional phase. These processes are not mapped by the dif-
fusion process. Nonetheless, the model allows for esti-
mating their total duration: The parameter t0 indicates
the duration of all extradecisional processes.

Finally, it might be necessary to allow for intertrial
variability of the different parameters in the model. Rat-
cliff (e.g., Ratcliff & Rouder, 1998) uses a model with
intertrial variability of the drift rate (h), the starting
point (sz ), and the time constant of the motor response
(st ). The intertrial variability parameters of drift and
starting point are important, because they allow for mod-
eling of RT distributions in which error responses are
slower or faster than correct responses (see Ratcliff &
Rouder, 1998). Therefore, we included variability of
drift and starting point. For the sake of simplicity, how-
ever, we did not allow for intertrial variance of the RT
constant. Following Ratcliff, we assumed that the actual
drift in one trial is normally distributed around the aver-
age drift (v), with the standard deviation h; the actual
starting point is supposed to be equally distributed
within the interval from z � sz to z � sz.

Estimating the Parameters
The aim of the estimation of the parameters is to opti-

mize the fit of the empirical and the predicted RT distri-
butions for both types of responses simultaneously. For
the optimization process, a criterion is needed that spec-
ifies the degree of correspondence between the theoret-
ical and the empirical distributions (goodness of fit).
Ratcliff and Tuerlinckx (2002) compared three different
parameter estimation procedures (i.e., maximum likeli-
hood, chi-square, and weighted least square). From our
point of view, all these methods have specific problems.
The maximum likelihood method seeks to maximize the
predicted probability for each empirical RT. This algo-
rithm might be especially vulnerable to the contamina-
tion of data (Ratcliff & Tuerlinckx, 2002). Especially,
outlier times may strongly bias the parameter estimation;
however, Ratcliff and Tuerlinckx are able to reduce this
vulnerability by introducing a new parameter that con-
trols for contamination. The chi-square and the weighted
least-square methods are not based on single RTs, but on
the number of times found in certain ranges on the time
axis. These methods are quite coarse (because they are
not based on individual responses) and have the disad-
vantage that the specification of the time segments is al-
ways somewhat arbitrary.2

An alternative to these three procedures for parameter
estimation is presented in the following section. The opti-

Table 1
Parameters of the Diffusion Model

Parameter Description

Upper threshold (a) Response criterion (conservative vs.
liberal)

Starting point (z) Asymmetries in the response criterion
Drift (v) Information uptake per time
Response time constant (t0) Nondecisional portion of the response 

time

Note—See text for further explanations.
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mization criterion for the algorithm is provided by the KS
test (Kolmogorov, 1941; see also Conover, 1999). This test
is used to check whether an empirical distribution of val-
ues matches a given theoretical distribution. The test sta-
tistic (T ) is the maximum vertical distance between the
theoretical and the empirical cumulative distributions
(see Figure 2). For a given value of T and a given num-
ber of instances (e.g., response times), the test provides
the exact probability p that the empirical times fit to the
theoretical distribution (Conover, 1999; Miller, 1956). A
significant result (e.g., one below a � .05) indicates that
correspondence between both distributions is unlikely.

The statistic of the KS test (T ) can be used as an opti-
mization criterion for the parameter estimation proce-
dure: Parameters of the model are varied in such a way
that T (i.e., the maximum vertical distance between the
empirical RT distribution and the predicted time distrib-
ution) becomes minimal. Because T is directly—and
monotonically—related to the probability of match be-
tween the empirical and the predicted distributions, it al-
lows for an identification of the optimal set of parameter
values. It might also evade the disadvantages of the other
methods mentioned above. First, in contrast to the max-
imum likelihood method, times with a predicted proba-
bility near—or even equal to—zero have no inflated in-
fluence. Second, the procedure is fine graded, because it
is based on single RTs.

The application of the KS test for evaluating the
model fit requires the comparison of two predicted dis-
tributions with two empirical distributions (i.e., the dis-
tributions at the upper and the lower thresholds), because
the model is based on separate distributions for the RTs
for the two alternative responses. To test the fit for both
distributions simultaneously, we have to associate the
two predicted distributions and the two empirical distri-
butions, respectively. This can be done by mirroring the
distribution of RTs for one type of response (e.g., the dis-
tribution at the lower threshold) at the zero point of the

time dimension, so that all the times in this distribution
receive a negative sign. Please note that, in most cases,
one threshold is linked to correct responses and the other
to erroneous responses. In this case, all error responses
have to be mirrored (or vice versa, all correct responses).
Composing a single RT distribution from the two RT dis-
tributions for the different response alternatives—with
short times lying at the inner edges (near zero) and the
tails with the longer times at the outer edges—allows for
a single KS test.3 Figure 3 illustrates this procedure. If
there are different types of stimuli, different drift rates
can be expected. It might be promising not to estimate
completely independent models for each type of stimu-
lus, but to determine that all parameters except for the
drift take the same value in both models. In this case, the
product of the probabilities of the different KS statis-
tics—that is, the compound probability that the different
models fit the data—are used as the criterion in the op-
timization procedure. The T statistic of the KS test is to
be minimized in an iterative search process. To search for
the minimum in the parameter space, the simplex method
(Nelder & Mead, 1965) was used. In the Appendix, the
mathematical definition of the diffusion model, as well
as the formula for the KS test, is provided.

Testing the Model
The rationale for the appropriate test of model fit is

based on the optimization criterion that has been de-
scribed in the preceding section: Again, the KS statistic
is used to evaluate the degree of match between the em-
pirically observed RT distributions and the cumulative
density function that is predicted on the basis of the pa-
rameter values of the diffusion model. However, in a typ-
ical experiment, there are different participants and/or
experimental conditions for which different models are
estimated. This implies that a KS test has to be con-
ducted for each model (i.e., for participants and condi-
tions, different KS tests have to be conducted). To get an
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Figure 2. The statistic of the Kolmogorov–Smirnov test (T ) is the maximum vertical distance between two cumulative
distribution functions. Each stage in the stepped line represents one response at the time represented on the abscissa.
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estimate of the overall fit of the models with the data,
the number of significant KS tests (a � .05) can itself be
subjected to a binomial test with parameters of n (num-
ber of tests) and p (a). A significant result of this overall
binominal test indicates that the diffusion model in the
tested form does not fit the data from the total sample.
This method provides an exact test applicable to a whole
sample of distributions, which we consider to be a valu-
able complement to graphical demonstrations of model
fits (i.e., quantile probability functions; Ratcliff, 2001;
Ratcliff & Tuerlinckx, 2002).

EXPERIMENT 1

In a f irst experiment, we manipulated the relative
speed of information uptake, conservatism, and the du-
ration of the motor response in a color discrimination
task. These manipulations should specifically affect the
drift rate (v), the distance between thresholds (a), and the
motor component (t0), respectively, in a diffusion model
data analysis. If the predicted pattern emerges, this is
strong support for the validity of the model.

Altogether, four different experimental conditions are
reported. First, a standard condition, which provided base-
line values for all the parameters, is presented. In a sec-
ond, more difficult condition, the stimuli were harder to
discriminate. Therefore, the information uptake should
be reduced, which should result in a lower drift rate (v).
In a third block, an accuracy motivation was induced.
This manipulation should lead to more conservative re-
sponse criteria and should increase the distance between
thresholds (a). Finally, a more difficult form of response

had to be executed. In this condition, an increase in the
value of the motor component (t0) was predicted.

Method
Participants. Thirty-six students (27 females and 9 males) at

the University of Trier participated in partial fulfillment of course
requirements.

Design. Essentially, the design consisted of the within-subjects
factor condition (standard, difficult, accuracy, and response handi-
cap). The four blocks were presented in random order.

Apparatus and Stimuli. The experiment was implemented on
an IBM-compatible Pentium computer connected to a 17-in. color
monitor using a Turbo Pascal 7.0 program in graphics mode. As
stimuli, we used colored squares (10 � 10 cm) consisting of 250 �
200 screen pixels. Each pixel was either orange (RGB color values:
63, 25, 0) or light blue (0, 25, 63). The proportion of colors within
each stimulus was 53:47. In the difficult condition, the ratio was
51.5:48.5. Pixels were randomly intermixed. For half of the stimuli,
orange was the dominant color; for the other half of the stimuli, blue
was dominant. The stimuli were presented on a dark background.

Procedure. The participants started with a training block of 42
trials. Thereafter, the four experimental blocks followed in random
order. Each block consisted of 2 warm-up trials and 40 experimen-
tal trials. Each trial had the following sequence. First, a gray square
of the same size as the stimuli was presented. This square was re-
placed by the colored stimulus 750 msec later. The stimulus re-
mained on the screen until a response was registered or the time limit
of 1,500 msec (3,000 msec in the accuracy condition) was reached,
whichever happened first. The remaining time was visually repre-
sented by a vertical time bar that decreased in length below the stim-
ulus. The participant’s task was to decide which of the two colors
was dominant—that is, which color composed the major part of the
stimulus. Two marked keys on the computer keyboard (“C” and
“M”) were used for the responses. The assignment of keys to colors
was counterbalanced across participants. Directly after the response,
the word “correct” or “wrong” was presented below the color field,

Figure 3. Comparison of empirical and predicted response time distributions. Times for one of the two responses (e.g., all
left keypresses in a dual-response task) have been mirrored on the zero point of the time axis. The mirrored times are rep-
resented by the left part of the graph. For example, a response time of 0.850 is recoded as �0.850. The steep rise of the dis-
tribution functions at about �0.6 indicates that many responses occurred with a latency of 0.6 sec. The level of the function
in the middle of the graph shows that about 60% of all the reactions have been of the mirrored type. The ascending black
line is the accumulated probability function computed according to the diffusion model. The gray line shows the cumula-
tive probability of empirical response times. Note that both cumulative functions must converge to 1.
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depending on whether or not the correct answer had been given. Si-
multaneously, the stimulus was replaced by a monochromatic field
showing the formerly dominating color. Feedback was removed
from the screen 1,000 msec later, and a new trial started.

Experimental manipulations. As was outlined above, the ex-
periment consisted of a standard condition and three variations. In
the difficult condition, the dominant color occupied only 51.5% (in-
stead of 53% in the standard condition) of the pixels of a stimulus.
Second, there was an accuracy condition, in which the RT limit was
doubled (3 sec instead of 1.5 sec). In addition, the participants were
instructed to work especially carefully and to avoid mistakes in this
block. The third variation refers to the form of response: In the re-
sponse handicap condition, the participants were told to use the
same finger for both responses. To ensure that the finger was posi-
tioned between both response keys before the stimulus was shown,
the participants had to press a key that lay between the two response
keys (i.e., the “B” key) to start each trial.

Results
Parameter estimation. For each participant, four in-

dependent models were calculated, one for each experi-
mental condition. Each of these models allowed for two
different drift rates (for the two stimulus types) and com-
prised two different diffusion models (see the Estimating
the Parameters section).

Therefore, there were 36 � 4 � 144 independent
models, based on 40 trials each. For the interpretation of
parameters, average values were computed across par-
ticipants. All responses below 300 msec were discarded
prior to parameter estimation (1% of the trials). This is
important because low outliers may have a strong influ-
ence on the complete model (see Ratcliff & Tuerlinckx,
2002, for a discussion of the influence of outliers).

For all blocks of the experiment, a model was chosen
in which the upper threshold was associated with the or-
ange response (i.e., the press of the orange key), and the
lower threshold was associated with the blue response.
For the two types of stimuli (orange dominant vs. blue
dominant), two different drift rates were estimated. Strictly
speaking, our model is composed of two diffusion models,
with the constraint that all the parameters except drift rate
(a, z, t0) are identical for both models. Please note that
these two diffusion models were always estimated si-
multaneously in a single estimation process. Together,
f ive parameters were estimated: a, z, v1, v2, and t0.
Table 2 shows the mean parameter values across partic-
ipants for all blocks in the experiment. To facilitate the
interpretation, z/a is presented as a measure of bias, in-
stead of z. Values greater than 0.5 on z/a indicate that the
starting point lies closer to the upper threshold (a),
whereas lower values indicate a starting point closer to
the lower threshold.

Within-block analyses. Table 2 shows that the pro-
cesses always started roughly at the midpoint between
both thresholds: One-group t tests revealed that only in
the response handicap condition did z diverge signifi-
cantly from a/2 [t(35) � �2.39, p � .05].

The v1 parameter is the drift rate for orange-dominated
stimuli. In all blocks, v1 had a positive value [all ts(35) �
3.84, p � .001], indicating a positive mean gradient for

the process. Contrarily, the drift in trials with blue-
dominated stimuli (v2) was negative in all conditions [all
ts(35) � �5.35, p � .001]. To check for symmetry, the
absolute values of the drift parameters were compared
between orange-dominated and blue-dominated stimuli
in four paired t tests. These analyses revealed a signifi-
cantly larger drift rate for blue-dominated stimuli in the
response handicap condition [t(35) � �2.09, p � .05].
No other comparison reached significance [all ts(35) �
1.32, p � .19].

Between-block analyses. To test the influence of the
experimental manipulations, all the parameters in the
three variation blocks were contrasted with the param-
eters in the standard condition. All significant effects are
marked in Table 2. The absolute values of the drift pa-
rameters in the difficult condition were lower than those
in the standard condition, both for v1 [t(35) � 2.44, p �
.05] and for v2 [t(35) � �3.19, p � .01]. The distance be-
tween thresholds (a) was larger in the accuracy condition
than in the standard condition [t(35) � �4.63, p � .001].
In addition, we found an increased value for t0 in this con-
dition [t(35) � �3.71, p � .01]. Finally, in the response
handicap condition, the RT constant (t0) significantly ex-
ceeded the value in the standard condition t(35) � �8.27,
p � .001]. In this condition, the relative starting point (zr)
also was somewhat increased [t(35) � �2.39, p � .05],
and the drift parameter v2 was decreased [t(35) � �2.32,
p � .05]. No other contrasts reached significance.

Model fit. As was outlined above, we performed in-
dividual tests of fit separately for each diffusion model
(i.e., for each participant and for each condition). There
were 2 (stimulus types) � 4 (condition) models for each
of the 36 participants, resulting in a total of 288 models.
The KS tests revealed no significant result at the .05
level. It can be concluded that the individual models de-
scribe the individual RT distributions well.

To demonstrate model fit in a more descriptive way,
empirical and predicted values of the medians of the RT
distributions for correct and erroneous responses and of

Table 2
Average Parameter Values for Different Experimental

Conditions of Experiment 1

Condition

Response
Parameter Standard Difficult Accuracy Handicap

a 1.18 1.19 1.37** 1.16
z/a 0.49 0.47 0.52 0.56*
v1 0.89 0.46* 0.91 1.02
v2 �1.03 �0.57** �1.18 �1.41*
t0 0.47 0.47 0.52** 0.73**
h 0.80 0.90 0.85 0.89
sz 0.09 0.09 0.09 0.08

Note—The parameters describe diffusion models with the orange re-
sponse linked to the upper threshold and the blue response linked to the
lower threshold. The parameter v1 represents the drift for orange-
dominated stimuli, and v2 represents the drift for blue-dominated stim-
uli. All tests refer to a comparison with the standard condition. *p �
.05. **p � .01.
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proportions of correct responses for all the conditions in
Experiment 1 are presented in Figure 4. As can be seen
from the high concordance of the empirical and the pre-
dicted values, there is a good fit for most of the partici-
pants. However, there are some points with rather large

deviations of predicted and empirical medians. These
large deviations are found only for distributions of error
responses, and especially where very few errors were
made (in most cases, fewer than 10). This indicates that
reliable predictions require a somewhat higher number
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Figure 4. Individual model fit (Experiment 1). The top panel shows
the concordance of the medians of the empirical and the predicted re-
sponse time (RT) distributions. For each participant and experimental
condition, the distributions of correct responses and errors are repre-
sented by single symbols. In case of large misfit, the number of RTs
building the empirical distribution is also shown. The bottom panel
shows the concordance of the proportions of correct responses.
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of RTs within each empirical distribution. This is also il-
lustrated by the fact that there is a significant negative
correlation of the absolute deviations between the medi-
ans of the empirical and the predicted RT distributions
and the number of RTs making up the empirical distrib-
ution (r � �.42, p � .001].

Discussion
The results provide evidence that the diffusion model ad-

equately represents the different process components that
are involved in speeded binary color dominance decisions.
The within-block analyses showed that the decision pro-
cess is roughly symmetric: The process starts at the mid-
point between thresholds and is driven upward by orange-
dominated stimuli or downward by blue-dominated stimuli.
More interesting are the between-block comparisons. The
different conditions had been implemented to investigate
the validity of the interpretation of the parameters. It
should be demonstrated that each parameter reflects spe-
cific components of the decision process and is not in-
fluenced by other processes. Only if the validity of the pa-
rameters is demonstrated can diffusion model results be
interpreted clearly. In detail, we found decreased drift rates
when we made stimuli harder to discriminate, an increased
distance between thresholds when we induced an accu-
racy motivation, and a substantial increase in the motor
component when we introduced a more time-consuming
form of response. Some unexpected effects emerged as
well: There was an increase of t0 in the accuracy condi-
tion. This finding can be easily accommodated, because
it is plausible that participants execute their responses
more slowly if time pressure is reduced, which was the
case in this condition. The changes in drift rate and start-
ing point in the difficult condition, however, cannot eas-
ily be explained.

The KS tests revealed a good model f it for all the
models (i.e., for all participants and all conditions). This
is an additional clue that the diffusion model was appro-
priate for describing the data without losing much infor-
mation. Descriptive data on the model fit showed that fit
was worst for the error distributions of the accuracy con-
dition. This was probably due to the low numbers of er-
rors in this condition.

EXPERIMENT 2

In Experiment 1, the parameter z, which reflects the
starting point of the diffusion process, was not manipu-
lated. Therefore, Experiment 2 focused on the empirical
validation of the interpretation of the z parameter. Again,
a color discrimination task was used. This time, however,
the two responses were not equivalent anymore: The par-
ticipants collected points during the experiment, and an
asymmetric payoff matrix promoted one response over
the other. We expected that this manipulation would bias
the starting point of the diffusion process toward the
threshold that was linked with the rewarded response—
that is, less information would be needed to reach the
corresponding threshold, as compared with the opposite

threshold. As a second variation, the stimuli were pre-
sented in two different color ratios.

Method
Participants. Twenty-four students (17 females and 7 males) at

the University of Trier participated in partial fulfillment of course
requirements.

Design. One response was fostered by an asymmetric payoff ma-
trix. Which of the two responses was selected as the privileged re-
sponse (orange vs. blue) was counterbalanced across participants.

Apparatus and Stimuli. The procedure was the same as that in
the previous experiment, with the following exception: The stimuli
were presented in two different color ratios, 52:48 and 51:49.4

Procedure. The experiment consisted of 12 training trials and
160 experimental trials, which were presented without intermission
in one block; each of the four stimulus types (orange dominant vs.
blue dominant � easy vs. difficult) was presented 40 times. Trials
were presented in random order. The participants received points
for correct answers and lost points for errors. These point credits
were exchanged into monetary payoffs later. For each participant,
one color response had a higher expected value because of an asym-
metric payoff matrix (Table 3): If the promoted response was given
correctly, 10 points were credited; if it was given mistakenly, how-
ever, only 5 points were lost. Opposite rules held for the nonpro-
moted response: Only 5 points were gained when the color response
was given correctly, but 10 points were subtracted when an error
occurred. These rules were explained carefully in the instructions.
During the experiment, the current amount of points was visible at
the bottom of the screen. In addition, gains of 5 points were sig-
naled by one high-frequency beep, and gains of 10 points by two
high-frequency beeps. Accordingly, losses of 5 or 10 points were
accompanied by one or two low-frequency beeps, respectively. At
the end of the experiment, the participants received 20 Euro Cent
(about $0.18 at that time) for each 100 points they reached. The pro-
cedure resulted in a mean benefit of 1.28 Euro (about $1.15).

Results
Parameter estimation. RTs below 300 msec (0.3% of

all the times) were excluded from all analyses. In Exper-
iment 2, a model with four drift parameters, one for each
stimulus type, was estimated (i.e., this model consisted
of four connected diffusion models; see the Estimating
the Parameters section for further explanations). The pa-
rameters v1 to v4 described the drift rate for a descending
proportion of orange pixels (52%, 51%, 49%, and 48%;
see the Apparatus and Stimuli section). Furthermore,
there were the same parameters as above: a, z, t0, h, and
sz, resulting in a total of nine free parameters for each
model. For each participant, one model was computed
on the basis of all 160 experimental trials. The average
parameter values for both groups of participants are
shown in Table 4. We expected that the manipulation

Table 3
Payoff Matrix Used in Experiment 2

Stimulus Color

Response Color 1 Color 2 S (Response)

Color 1 10 �5 �5
Color 2 �10 5 �5

S (stimulus) 0 0

Note—Selection of the promoted response (Color 1) was counterbal-
anced across participants.
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should bias the relative starting point of the process—
that is, the position of z in relation to a. Therefore, the
relative starting point (z/a) is presented in Table 4. A
value of .50 for z/a indicates that the process starts at the
midpoint between both thresholds; larger values indicate

that the starting point is closer to the orange threshold
than to the blue threshold, and vice versa.

Statistical analyses. All the parameters were tested
for between-group differences (see Table 4). A signifi-
cant difference emerged only for the relative starting

Figure 5. Individual model fit (Experiment 2). The top panel shows
the concordance of the medians of the empirical and the predicted re-
sponse time distributions. For each participant and each of the two dif-
ficulty levels, the distributions of correct responses and errors are rep-
resented by single symbols. The bottom panel shows the concordance of
the proportions of correct responses.
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point z/a [t(22) � 4.08, p � .01]. The effect reveals that
the starting point was biased toward the promoted re-
sponse—that is, the participants were more liberal in
giving the promoted answer and more conservative re-
garding the nonpromoted answer. In the between-group
comparison, no other effects reached significance.

The drift parameters were analyzed additionally in a 2
(group) � 4 (color ratio) analysis of variance. There was
a strong effect of color ratio [F(3,20) � 89.55, p �
.001], indicating larger (i.e., more positive) drift rates for
higher proportions of orange in the stimuli. No other ef-
fects reached significance.

Model fit. In this experiment, 4 (stimulus types) � 24
(participants) � 96 different probability distributions were
predicted by the models. Six of the KS tests detected a sig-
nificant (a � .05) deviation of the empirical from the pre-
dicted distribution. The probability of finding six or more
mismatches with a � .05 in 96 tests was p � .35, indicat-
ing that the models describe the empirical RT distributions
well. Again, model fit should also be demonstrated de-
scriptively. The coherence model predictions and the em-
pirical distributions can be seen on an individual level in
Figure 5: Again, the medians of the empirical RT distribu-
tions are plotted against the medians of the predicted dis-
tributions, both for errors and for correct responses.

Discussion
The second experiment was carried out to validate the

interpretation of the bias parameter (z/a) in the diffusion
model. Specifically, we investigated whether biasing re-
sponse tendencies in a binary decision task by means of
an asymmetric payoff manipulation is mapped specifi-
cally onto the bias parameter in a diffusion model data
analysis. The parameter z indicates the starting point of
the diffusion process and, thus, defines—in combination
with the total distance between thresholds—the neces-
sary amount of information that is needed to draw a spe-
cific conclusion. In an unbiased model, z will equal a/2—

that is, the same amount of information is required for
each of both decisions. The closer z moves to one of the
boundaries, the more biased is the process. In this case,
the preferred response is initiated quickly and often.

In Experiment 2, we successfully manipulated z by
“rewarding” the participants for executing one of the two
responses. The starting point moved toward the thresh-
old that was connected with the rewarded answer. No
other parameter was affected by this manipulation. As
revealed by the KS tests, model fit was good.

GENERAL DISCUSSION

Diffusion models were introduced in psychology by
Ratcliff (1978) two and a half decades ago. These mod-
els describe a theoretical process of decision making. In-
terestingly, recent neurobiological studies based on single-
cell recording have shown activation patterns prior to
action and decision making that resemble the path of the
diffusion process (see Schall, 2001, for an overview).

Only the recent developments in computing power
allow for efficient parameter estimation. Our procedure
differs from the methods employed by Ratcliff in a cou-
ple of ways: (1) We use distributions of single RTs in the
estimation process, instead of using only certain per-
centiles of the RT distribution. (2) We introduced a new
optimization criterion to estimate the parameters that
was deduced from the KS test (Kolmogorov, 1941; see
also Conover, 1999). (3) The KS test is also used as a test
of the model fit. This method allows a clear-cut statisti-
cal test of whether or not a model fits the data.

The estimation procedure presented in this article has
been developed on the basis of theoretical considera-
tions. Because the KS statistic provides an exact test for
the match of an empirical and a predicted distribution,
this measure for the probability of match seems to be an
optimal criterion for parameter estimation. So far, no
empirical comparisons with other estimation procedures
have been made (e.g., concerning the influence of con-
taminants; see Ratcliff & Tuerlinckx, 2002), although
this is clearly an interesting challenge for the procedure.
Another important question for the application of the
model is how reliably the different procedures (i.e., KS,
maximum likelihood, and chi-square) can estimate the
parameters in cases in which there are the relatively
small sets of data (i.e., few RTs per participant) typically
used in cognitive research. It is plausible that procedures
based on single RTs (such as the KS-based procedure or
the maximum likelihood procedure) may be better at this,
because they use the total amount of information. To em-
pirically answer such questions, more simulation studies
have to be conducted.

The diffusion model provides plausible interpretations
for the estimated parameters. The distance between
thresholds (a) is interpreted as a measure of conser-
vatism—that is, the larger a is, the more information is
collected prior to a response being given. The starting
point (z) is an estimate of relative conservatism, or bias:

Table 4
Average Values of the Diffusion Model Parameters for Both

Groups of Experiment 2

Promoted Response

Parameter Orange Blue Difference

a 1.13 1.19 �0.06
z/a 0.54 0.44 0.10**
v1 0.70 0.69 0.01
v2 0.46 0.03 0.42
v3 �0.47 �0.69 0.22
v4 �0.70 �1.02 0.32
t0 0.44 0.49 �0.05
h 1.02 1.11 �0.09
sz 0.13 0.12 �0.01

Note—The parameters describe diffusion models with the orange re-
sponse linked to the upper threshold and the blue response linked to the
lower threshold. The drift parameters v1 to v4 are linked to the four dif-
ferent stimulus types with a descending proportion of orange pixels. In
addition to the estimated parameter, the relative starting point (z/a) is
shown (see the text for further details). **p � .01.
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If the process starts above or below the midpoint be-
tween the two thresholds, different amounts of informa-
tion are required for both responses; that is, a more con-
servative decision criterion is applied for one response,
and a more liberal criterion for the opposite response.
The drift rate (v) indicates the (relative) amount of in-
formation gathered per time, denoting either perceptual
sensitivity or task difficulty. The parameter t0, finally,
provides a measure of the duration of nondecisional
components of the response process—that is, first of all,
of the motor processes.

A possible criticism of the diffusion model is that it
uses a fairly large number of parameters to model RT
distributions. Given that it is always easy to fit any pos-
sible data set, provided that enough independent param-
eters are available, this leads to the question of whether
unambiguous interpretations of the parameters of the
model are warranted. In a recent set of simulation stud-
ies, Ratcliff (2002; Ratcliff & Tuerlinckx, 2002) demon-
strated that diffusion models impose a number of impor-
tant restrictions on data and that violations of these
restrictions can be detected by a low fit of the model.
However, this still leaves open the question of whether
the parameters of the model yield unique estimates of
distinct components of real decision processes. For ex-
ample, the model might be insensitive in disentangling
different components of the decision process and might
show a strong tendency to represent different compo-
nents of the process on only one parameter. Alterna-
tively, the model might have difficulty in uniquely iden-
tifying a certain component of the decision process with
only one parameter: Variations in different parameters of
the model might be equifunctional in representing dif-
ferences in the same component of the decision process,
so that only slight variations in the data set can lead to
dramatic changes of the parameter estimates. Ratcliff
and Tuerlinckx have shown that parameters can be re-
produced reliably from a set of simulated data, even if
contaminated times are added after the simulation. How-
ever, this does not demonstrate whether the different pa-
rameters represent specific cognitive processes. An eval-
uation of the empirical validity of the parameter estimates
cannot be decided in theory but requires empirical testing.
The experiments reported in this article are a step in this
direction. We used simple, straightforward experimental
manipulations that should uniquely influence certain
components of the decision process. The face validity of
the manipulations is of utmost importance, because it is
a prerequisite for taking the observed effects as a test of
the model’s validity, rather than as a test of what was
being manipulated. In contrast to other studies based on
similar paradigms (e.g., Ratcliff et al., 2001, 2003), in
the present article systematic manipulations within one
paradigm have been used to check for cognitive pro-
cesses related to the different model parameters in the
absence of any other research question.

Two experiments were carried out to test whether sim-
ple experimental manipulations aimed at influencing spe-

cific components of the decision process in a straightfor-
ward way map onto corresponding parameters of the
model while leaving others unaffected. In Experiment 1,
stimuli that were difficult to categorize produced smaller
drift rates than did easy stimuli, an induction of accuracy
motivation increased the conservatism parameter, and a
response handicap did not affect the decision-related pa-
rameters but led to increments in the motor component.
In Experiment 2, an asymmetric payoff matrix promot-
ing one of the two responses moved the starting point to-
ward the threshold that was linked to the promoted re-
sponse. In sum, our findings clearly support the validity
of the previous interpretations of the parameters of the
diffusion model.5

CONCLUSION

RT data from binary decision tasks are a major source
of information in experimental psychological research.
The diffusion model (Ratcliff, 1978) offers a powerful
approach for analyzing these data. The separation and
identification of different components of the decision
process allow fine-grained interpretations of the find-
ings that also provide interesting information for theo-
retical debates regarding the processes that underlie or
mediate experimental effects. To give just a few examples,
a diffusion model data analysis might help to clarify the
nature of the processes involved in cognitive aging (Rat-
cliff et al., 2000; Ratcliff et al., 2001, 2003), of the under-
lying processes in associative or affective priming (Wen-
tura, 2000), or of what drives effects in the IAT (Brendl,
Markman, & Messner, 2001; Rothermund & Wentura,
2001). Another advantage of this form of data analysis is
that it is able to integrate a large amount of the available
information in only one analysis (e.g., RTs for correct re-
sponses and errors and percentages of errors). These ex-
amples reveal that the diffusion model is a highly promis-
ing statistical tool with a very wide range of potential
applications. In the present article, we have reported some
new strategies that further improve the application of the
model (new techniques of parameter estimation and
model testing). The main focus of the article, however,
was two validation experiments that yielded further evi-
dence in support of the model’s capacity to identify hidden
cognitive processes in binary decision tasks.
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NOTES

1. Whether the model adequately represents the underlying cognitive
processes in a task remains an open question even when the model fits
the data well, because there are always infinitely many theoretically dis-
tinct models that fit the data equally well.

2. The number (and the width) of the time segments may influence
the result of the estimation process: (Slightly) different parameter val-
ues may, for example, emerge in estimation processes based on five or
six segments. It is hard to pronounce upon what would be an optimal
number of segments: If few large segments are chosen, much informa-
tion is lost (concerning the exact shape of the distribution); if many
small segments are chosen, the number of empirical RTs in each is
largely chance dependent.

3. We thank Heinrich von Weizsäcker for this ingenious hint.
4. A third stimulus condition with color ratios of 53:47 was also in-

cluded in the experiment. Trials in this condition were not entered into
the analyses, because model fit was not especially good for this condi-
tion. The low model fit is probably due to the extremely low error rates
in this condition (median of the number of errors � 8). Nonetheless, the
results regarding the starting point of the diffusion process do not
change substantially if this condition is included in the analysis.

5. With only two data points for each manipulation, it is not possible
to describe the exact functions relating the parameter values to physical
properties of the stimuli. However, it is clear that monotonic relation-
ships will emerge. (Ratcliff & Rouder, 1998, point out a probability-
matching explanation of the drift rate.)

APPENDIX
Mathematical Details

Mathematical Definition of the Diffusion Model
The probability that a diffusion process with constant drift v and start at z � 0 will hit a � z before time t

and before the first visit at 0 has a density, which we shall denote by g� (t, z, a, v). We have two different rep-
resentations for this density (all formulas are derived from Feller, 1971):
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and
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By symmetry, we get the corresponding densities for the probability that a diffusion process with constant
drift v and start at z � 0 will hit 0 before time t and before the first visit at a � z as g�(t, z, a, v) � g� (t, a�z,
a, �v). This gives
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The case of a diffusion constant s other than 1 can be reduced to the case above: If we scale down every-
thing by the factor s, we get an ordinary diffusion with diffusion constant 1, with constant drift v/s, start at z/s,
and the upper threshold a/s. So the probability that a diffusion process with diffusion constant s, drift v, and
start at z � 0 will hit a � z before time t and before the first visit at 0 has the density g� (t, z/s, a/s, v/s).

We need to evaluate these series numerically. The speed of convergence in these series is determined by the
exponential terms in the sum. So the series in Formula A1 will converge quickly when t is small, in compar-
ison with 2a2, and the series in Formula A2 will converge quickly when t is large, in comparison with p 2/2a2.
An advantage of Formula A2 is that we can calculate the distribution function: The probability that a diffu-
sion process with constant drift v and start at z will hit a � z before time t and before the first visit at 0 is

(A5)

For our parameter estimation, we use Formula A5. Note that t is not the RT but the duration of the decision
process. Therefore, t � rt �t0 has to be substituted in the equation.

Necessary Number of Steps in the Calculation of the Infinite Series of Formula A5
Here, we derive an upper bound for the difference between the exact value of the infinite sum from For-

mula A5 and the finite sum, which we will calculate using our program. We can then choose the required num-
ber of steps, in order to keep the error below a given bound e.

1. For the calculation below, we will need a bound for

that does not depend on n. Since

we will use

(A6)

for this bound. Because the set

is a circle in the complex plane, the possible values of the fraction in Formula A6 still form a (scaled and trans-
lated) circle in the plane.

Using a � Re(1�eic) � 1�cos(c), b � Im(l�eic) � �sin(c), and r �|1�eic| � ÷a2 � b2 � ÷2�2cos(c),
the center of this circle has the real part a/r 2 and the imaginary part �b/r 2. The radius of the circle is l/r, so
we conclude that

(A7)

2. The next step is to obtain a general result about the tails of oscillating series. Let an be a sequence mo-
notonically decreasing to 0. Analogous to partial integration, we find

and, thus,
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Letting M Æ • proves

This helps to estimate the tail of the series, which is omitted from the calculation.
3. In Formula A5, we have

and

From c, we can calculate S(c) with Formula A7 and then use the following estimate:

(A8)

Formula A8 gives an upper bound for the difference between the theoretical value from Formula A5 and
the value that our program calculates (summing up to N). To achieve a prescribed precision e, we simply in-
clude enough terms in the sum to make an + 1S(c) smaller than e.

4. A simplification is possible, because for large n the exponential term and the term a2v2/2 in the defini-
tion of an make almost no difference. So we get

If we want to estimate the integral up to accuracy e, we can use

(A9)

to get

Formula A9 gives the required number of steps to keep the error smaller than e.
5. Examples. For the results from Experiment 1 (see Table 2), we get the following required numbers of

steps.
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1.18 0.49 � a 0.89 0.01 108
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The Probability of the KS Statistic
A formula for the probability of a given value of the KS statistic, depending on the number of observations,

is provided by Conover (1999):

(A10)

where T is the observed KS statistic, n is the number of observations, and [n(1�T )] is the maximum integer
less than or equal to n(1�T ). Note that Formula A10 is valid for the two-sided test.

(Manuscript received July 30, 2003;
revision accepted for publication February 21, 2004.)
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