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Abstract

In this paper, we describe a new algorithmic approach for parameter estimation in Rat-
cliff’s (1978) diffusion model. This problem, especially if inter-trial variabilities of parame-
ters are included in the model, is computationally very expensive; the parameter estimation
procedure often takes a long time even with today’s high-speed computers. The algorithm
described here makes the calculation of the cumulative distribution functions for predicted
process durations computationally much less expensive. This improvement is achieved by
solving the Kolmogorov backward equation numerically instead of employing the previously
used closed form solution. Additionally, the algorithm can determine the optimum fit for
one of the model parameters (the starting point z) directly, thereby reducing the dimension
of the parameter search space by one. The resulting method is shown to be notably faster
than the standard (closed-form solution) method for parameter estimation.

1 Introduction

The diffusion model was proposed for the analysis of fast binary decisions by Roger Ratcliff
(e.g., Ratcliff, 1978; Ratcliff, Van Zandt, and McKoon, 1999) nearly three decades ago. Since
then it has been applied in different domains of cognitive psychology like cognitive aging (e.g.,
Ratcliff, Spieler, and McKoon, 2000; Ratcliff, Thapar, Gomez, and McKoon, 2004; Ratcliff,
Thapar, and McKoon, 2001, 2003), memory retrieval (e.g., Ratcliff, 1978; Spaniol, Madden,
and Voss, 2006), and perceptional processes (e.g. Ratcliff, 2002; Ratcliff, Thapar, and McKoon,
2001; Voss, Rothermund, and Brandtstädter, in press; Voss, Rothermund, and Voss, 2004). The
great benefit of this kind of modelling lies in the diffusion model’s capacity to extract maximal
information from a given set of data. Unlike traditional methods in experimental psychology
which normally only use either mean response times or accuracy data, a diffusion model analysis
is based on the full shape of the response time distribution for correct responses and errors
and—simultaneously—on the proportion of error responses. This exhaustive use of information
allows detailed conclusions about the cognitive processes that cause the empirical response time
distribution (Voss et al., 2004).

However, this benefit of the diffusion model comes at a high cost: a lot of computational
power is needed to estimate the model parameters. Calculation is especially expensive when the
complete model as proposed by Ratcliff (e.g., Ratcliff and Rouder, 1998; Ratcliff and Tuerlinckx,
2002) is implemented; in this model, parameter variability is allowed across trials of an exper-
iment. This makes computation so expensive that—even with a fast computer—estimation of
the model parameters might take several hours or even days. The problem of long computation
times is especially pointed when parameters are calculated separately for each participant and
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when the Kolmogorov-Smirnov method (Voss et al., 2004) or the maximum likelihood estimator
are used rather than χ2-based algorithms (Ratcliff and Tuerlinckx, 2002).

The dominant contribution to the computation time comes from the computation of the
predicted RT-distribution which forms the basis of the parameter estimation procedure (see
eq. (2) in section 4, The PDE Method ; cf. also: Ratcliff, 1978; Voss et al., 2004): In the process
a sum with a—theoretically—infinite number of terms has to be evaluated frequently. Voss et
al. (2004, Appendix B) show how the sum can be truncated to reach a given accuracy. However,
the problem of huge computation times is still present.

We propose an alternative approach to solve this problem. While so far the diffusion model
has always been calculated by eq. (2), there is a less expensive method: the predicted RT-
distribution can be regarded as the solution of a partial differential equation (PDE). Instead
of solving this equation analytically and reaching eq. (2) with its infinite sum, it is also possi-
ble to solve the equation numerically. While yielding the same accuracy, the PDE method is
substantially faster than the better known ‘closed form’ solution.

We start the presentation, in Section 2, by giving a short overview over the diffusion model.
Section 3 discusses the required parameter estimation procedure. Section 4 contains the central
result of this article: it explains how the predicted RT-distribution can be computed as part of
the algorithm by numerically solving a PDE. Section 5 compares the resulting algorithm with
previously suggested methods and Section 6 contains some concluding remarks.

Finally, in two appendices, we present some mathematical background material for the pro-
posed method: Appendix A contains a complete proof that the predicted RT-distribution can
indeed be found as the solution to the given PDE. And Appendix B contains a short primer
about numerical solution of PDEs, including pointers to the relevant literature.

Our own parameter-estimation software (fast-dm), implementing the method introduced in
this paper, is described in detail in Voss and Voss (in press) and is available for download from
the authors’ homepages1.

2 Description of the Diffusion Model

A diffusion model analysis is adequate for nearly any data from speeded binary decisions, where
“speeded” means mean response times up to about one or two seconds. The diffusion model is
based on a Brownian Motion with constant drift (see Figure 1): this diffusion process represents
an internal counter on which information in a trial of a task is accumulated. The process runs
between two thresholds and is terminated as soon as one of the thresholds is hit. The process
duration represents the duration of the decisional process and position of the process at the end
(i.e., the threshold that has been hit) represents the outcome, that is, the decision that has been
reached.

The diffusion model is described by a number of parameters (e.g., Voss et al., 2004). Firstly,
the process is driven by a systematic drift (denoted by v) and random fluctuations. In psycholog-
ical terms the drift, which is assumed to be constant over time, is a measure of the participant’s
performance in the given task. For example, in a perceptual situation it represents the ability to
distinguish between two classes of stimuli. The random fluctuations add noise to the process and
lead to different process paths in different trials of an experiment. Therefore, processes with the
same drift rate vary in duration, and processes may even end at the threshold opposite to the
drift direction. The amount of noise s can be regarded as a model parameter called the diffusion
constant (this is sometimes referred to as the “intra-trial variability of the drift”). However, s
is only a scaling parameter, that is, changes in s just re-scale all other parameters linearly. For
the purpose of estimating the model parameters we fix the diffusion constant to the value 1.

The second model parameter is the threshold separation a. The larger this value, the longer
the process runs on average. At the same time accuracy of the decision process is increased by
large values of a, that is, the process stops more often at the threshold corresponding to the
sign of the drift (i.e., the upper threshold, if the drift is positive, and vice versa). Therefore, the
threshold separation can be regarded as a measure of conservatism.

The third parameter of the model is the starting point z. When the same amount of informa-
tion is needed before reaching the alternative decisions, z will equal a/2. In a biased situation,

1http://www.psychologie.uni-freiburg.de/Members/voss/fast-dm
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Figure 1: A schematic sketch of the Diffusion Model. A diffusion process with constant drift v
starts at z and is terminated as soon as it reaches one of the thresholds at a or 0, respectively.

for example when pay-off matrices make one response more attractive, the starting point may
be shifted towards one of the thresholds (Voss et al., 2004, in press).

The diffusion model describes just the decision process, which accounts only for a portion of
the total response time. The remaining part of the response time comprises encoding as well as
response processes. In the model all non-decisional processes are combined into the so-called RT
constant (denoted by t0 or sometimes ter, respectively).

In typical psychological research situations, there is often substantial variation of parameter
values between different trials of an experiment. Ratcliff (Ratcliff and Rouder, 1998; Ratcliff
and Tuerlinckx, 2002) showed that model fit can be substantially improved, when this inter-trial
variability is explicitly modelled. More specific, the complete diffusion model allows for inter-
trial variability of drift rate (sv or sometimes η), starting point (sz), and of the non-decisional
component (st0). The actual drift rate in one trial of a task is then assumed to be normally
distributed with mean v and standard deviation sv. For the sake of simplicity, the actual starting
point is assumed to have a uniform distribution from z−0.5 sz to z +0.5 sz. Likewise, a uniform
distribution is assumed for the actual RT-constant, ranging from t0 − 0.5 st0 to t0 + 0.5 st0 .

3 Parameter Estimation

The diffusion model data analysis basically can be described as a parameter-search problem: in
order to apply the diffusion model from section 2 in a psychological context a set of parameters
has to be found so that the predicted response time distributions of the model optimally fit the
empirical response times. To solve this problem a measure of the fit between the two distributions
has to be chosen. Commonly used methods minimise the Maximum-Likelihood (ML) or the χ2

statistics (Ratcliff and Tuerlinckx, 2002). More recently the use of the Kolmogorov-Smirnov
(KS) statistic was suggested (Voss et al., 2004). In our view using the KS statistic is especially
promising because it does not lose information by aggregating data (as the χ2 statistic does)
and it is not as strongly affected by outliers in the RT distribution as the ML statistic. Thus,
in the remainder of this paper, we will mainly address the KS method. However, the numerical
approach presented below can also be used for χ2 methods.

The KS statistic is the maximum vertical distance between the predicted and the empirical
cumulative response time distributions. If the KS-statistic is used for the diffusion model anal-
ysis, two cumulative distribution functions (CDFs)—for the two alternative responses—have to
be considered simultaneously. This problem is solved by merging both CDFs together, the “error
distribution” is formally mapped to the negative axis. This procedure is described in more detail
in Voss et al. (2004). A second—more practical—problem arises from the fact that the predicted
CDF has to be calculated very often, namely for all measured response times. In comparison,
the χ2 method requires values of the CDF only for the boundaries of the chosen RT bins. This
makes use of the KS-statistic more costly compared to use of the χ2 statistic.
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Once an optimisation criterion is defined, a multidimensional search procedure can be em-
ployed to find the optimal set of parameters. For this purpose we use the downhill simplex
method of Nelder and Mead (1965). Since the method works best when an approximation to the
optimum is already known, the initial simplex is constructed from the result of the EZ-diffusion
procedure (Wagenmakers, van der Maas, and Grasman, 2007). More details about parameter
estimation procedures may be found elsewhere (e.g., Ratcliff and Tuerlinckx, 2002; Ratcliff et al.,
1999; Voss et al., 2004).

4 The PDE Method

In order to implement the algorithm described in the previous section we need to compute
the cumulative distribution function of the response-time distribution as given by the diffusion
model from section 2. In this section we derive a partial differential equation whose solution
is the CDF in question. Using standard methods to numerically solve this PDE leads then
to efficient algorithms for computing the CDF and thus for solving the parameter estimation
problem described in section 3.

Let F+ be the probability that a Brownian Motion with constant drift v and starting at z
hits a > z before time t and before the first visit at 0. Let F− be the corresponding probability
for exit through 0 before hitting a. The (defective) CDFs F+ and F− can be found with the
help of the Kolmogorov backward equation, described in Feller (1971) and, more explicitly, in
equations (2.7) and (2.8) of Grasman and van Herwaarden (1999): F+ is the solution of the PDE

∂

∂t
F+(t, z) =

1
2

∂2

∂z2
F+(t, z) + v

∂

∂z
F+(t, z) for all t > 0, 0 < z < a (1a)

with boundary conditions

F+(t, 0) = 0, F+(t, a) = 1 for all t > 0 (1b)

and initial condition

F+(0, z) =
{

0 if 0 ≤ z < a and
1 if z = a. (1c)

A complete proof of this fact can be found in Appendix A.
Previous algorithms to estimate parameters of the diffusion model were based on the obser-

vation that the solution F+ of this PDE can be found explicitly: it is given by

F+(t, z) = 2πe(a−z)v
∞∑

k=1

k sin
(π(a− z)k

a

)1− e−
a2v2+π2k2

2a2 t

a2v2 + π2k2
(2)

(Ratcliff (1978); Voss et al. (2004), cf. also Section XIV.5 of Feller (1971) for a description of
how (2) can be derived from (1)).

The CDF F− for the lower boundary can be obtained by using drift −v (instead of v) and
starting point a− z (instead of z) in either Formula (1) or (2).

While the closed solution (2) is satisfying from a mathematical point of view, evaluating it
numerically is expensive. And to include variability in the parameters it is necessary to integrate
F+ and F− over z, v and t0 (Ratcliff and Tuerlinckx, 2002). This three-fold integration with the
infinite sum at its core is the reason why parameter estimation for the diffusion model becomes
so expensive when computation of F+ and F− is slow.2

We will illustrate that efficient parameter estimation algorithms can be based on numerical
solution of the PDE (1) instead of considering the infinite sum in eq. (2). A parameter estimation
procedure that is based on such a numerical solution can be faster than traditional algorithms
for three reasons: firstly, the infinite sum no longer needs to be calculated. Secondly, the PDE
approach returns the CDF for all values of z in one loop of calculations. The best starting
point z can be easily picked out without including this parameter in the costly multidimensional

2Of course an implementation of (2) still has a lot of room for optimisations: for example some of the integrals
might be tractable analytically and there are alternative closed form expressions for F+ which converge faster
than (2) for small values of t.
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search. Therefore the search space is reduced by one dimension. The third advantage takes effect
if the variability parameters are included in the model, because the PDE approach allows the
inclusion of variability in starting point and non-decisional component with little extra cost;3

only variability in the drift rate requires extra calculations.

5 Comparing the PDE Algorithm with the Infinite-Sum
Method

Comparing speed and efficiency of the PDE approach with algorithms based on eq. (2) leads to
some difficulties: in both cases small changes in the diffusion model software may cause large
changes in the trade-off between accuracy and computation time. For the closed-form solution
these changes concern the calculation accuracy of eq. (2) (ε, see Appendix B in Voss et al., 2004).
For the PDE approach the discretisation step size in time (∆t) and space (∆z), see Appendix B,
influence accuracy and speed of the parameter estimation. Additionally, for both methods, the
accuracy chosen in the evaluation of the integrals for the parameter variability and the details
in the implementation of the simplex search have a big impact.

Since, ultimately, only the quality of the result and the time used to obtain this result are of
interest, we perform two numerical experiments to compare accuracy and execution time of the
algorithms. In the first experiment we compare the performance for computing a set of CDFs
both using an implementation of the PDE method (fast-dm, Voss and Voss, in press) and using
a recent implementation of the IS method (DMAT, Vandekerkhove and Tuerlinckx, in press,
2007). Accuracy is measured by comparing the results with CDFs computed with significantly
higher accuracy (which takes far too long to be done in every-day application of the method).
In the second experiment, we compare the performance of the complete parameter estimation
procedure. For this purpose, one hundred random samples for one parameter set are generated.
Then, parameter values are recovered using implementations of the PDE algorithm and the IS
algorithm. Both computational approaches are used with the KS optimisation criterion and
with the χ2 approach. For both experiments the same computer with a dual core Pentium 4
processor (2.8 GHz) was used.

Experiment 1. For this study, target CDFs for 15 different parameter sets were calculated
with high precision4. For the “standard” parameter set the values a = 2, z = 0.5 a, v = 0,
t0 = 0.2, sz = 0, sv = 0, and st0 = 0 are used. In each of the remaining 14 parameter sets
one of the values is modified (see Table 1 for details). For each of the resulting parameter sets,
CDFs were calculated for both response alternatives from 0ms to 5000 ms in steps of 10ms. The
results were merged into one combined CDF for each parameter set by mirroring the “error”
distribution (cf. Voss et al. 2004 for details on this procedure).

In a second step all CDFs were calculated again using the plot-cdf tool of fast-dm (Voss and
Voss, in press) with precision 3.0 (default) and precision 2.0 and using the command cdfdif of
DMAT (Vandekerkhove and Tuerlinckx, in press) respectively. Accuracy was computed as the
maximum absolute vertical distance between the newly computed CDFs and the corresponding
target CDFs. Table 1 shows the computation time for this step and the number of correctly
obtained decimal places in the result, that is, the negative base-10 logarithm of the accuracy
values.

As can be seen, for most parameter sets the PDE method is noticeably faster while yielding
similar or better accuracy. This is especially noteworthy because the PDE method provides
results not only for the given value of z but for the whole possible range (from 0 to a) simulta-
neously. Accuracy of the IS method is especially problematic for large values of a: In this case,
the infinite sum has to be evaluated very often to get reasonable results and processing times
would increase to unacceptable values (which is prohibited in DMAT by a stopping criterion).

For large values of sv the processing time of fast-dm increases strongly. However, this is
3To include inter-trial variability of the starting point it is necessary to aggregate data from models with

different starting points; this information is automatically available in the numerical solution because CDFs are
calculated for ‘all’ starting points from 0 to a simultaneously. Likewise, all CDFs for different values of t0 are
present, because changing t0 only corresponds to a shift of the CDFs in t-direction.

4The CDFs that were used as reference to calculate the accuracy are available at http://www.psychologie.uni-
freiburg.de/Members/voss/fast-dm/materials
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Table 1: Computation time (T ) and accuracy (Acc) for 15 CDFs calculated both with the PDE
method (fast-dm, Voss and Voss, in press) and the IS method (DMAT, Vandekerkhove and
Tuerlinckx, in press). For the standard CDF the parameter values a = 2, z = 0.5 a, v = 0,
t0 = 0.2, sz = 0, sv = 0, and st0 = 0 were used. For each of the remaining CDFs the denoted
values are changed. Acc is calculated as −log10(Tmax), where Tmax is the maximal vertical
distance from an highly accurate CDF.

PDE (prec = 3.0a) PDE (prec = 2.0a) IS (DMAT b)
Parameter Set T [ms] Acc T [ms] Acc T [ms] Acc
Standard 6 4.5 3 3.7 201 2.8
a = 0.50 2 3.5 1 2.6 103 5.2
a = 4.00 10 5.3 4 4.3 322 0.8
z = 0.10 a 6 3.1 2 2.3 214 3.3
z = 0.25 a 6 4.1 3 3.1 215 2.9
v = 1.00 6 4.2 3 3.4 234 4.4
v = 4.00 6 3.1 3 2.8 168 5.6
t0 = 0.05 6 4.5 3 3.7 207 2.8
t0 = 1.00 5 4.5 2 3.7 178 2.3
sz = 0.20 a 11 4.6 3 3.5 255 2.8
sz = 0.90 a 9 4.1 3 3.2 255 2.9
sv = 0.50 178 3.4 10 2.4 236 2.9
sv = 3.00 1082 3.5 53 2.6 235 1.9
st0 = 0.50 t0 30 3.2 2 1.6 261 2.8
st0 = 2.00 t0 56 3.2 3 2.1 263 2.8

Notes: a The component “plot-cdf” of fast-dm-26 was used. b The procedure “cdfdif” of DMAT was used.

necessary to get the same precision as for the other parameter sets. As can be seen, the accuracy
of DMAT is comparably poor here as well (this is caused by the fact that DMAT uses a constant
number of steps for the calculation of the the corresponding integral).

In either computational approach, accuracy and processing time depend crucially on details
of the implementation. In our implementation of the PDE approach, the precision value deter-
mines step size in discretising the PDE in “space” and time. The default value of 3.0 used in
our software is chosen so that it guarantees an accuracy that is certainly good enough for all
psychological applications. Whenever calculation speed is of importance the user can decide to
decrease precision.

Experiment 2. The main aim of Experiment 1 is to demonstrate the accuracy of the PDE
algorithm in the calculation of a complete CDF. With Experiment 2, the efficiency of the PDE
algorithm in a parameter estimation procedure is analysed. Specifically, the performance of the
PDE method and the infinite-sum method are compared using the Kolmogorov-Smirnov criterion
or the χ2 statistic. There are two advantages of the PDE method in the multi-dimensional
parameter search: Firstly, the search space is reduced by one dimension as explained above.
This reduction of the search space makes the simplex algorithm more efficient and more stable.

Perhaps even more important is the time dimension of the CDF: Using the PDE algorithm,
the complete CDF is returned (with a given step-size ∆t) in one cycle of calculations. Therefore,
the estimation of the fit between the predicted and the empirical CDFs is—almost—independent
of the number of data points used for the calculation of the optimisation criterion: Consequently,
the duration of the parameter estimation should be similar for χ2 and for KS, although for the
χ2 statistic the predicted CDF has to be evaluated only at the borders of each response time bin
(e.g., 10 evaluations), while the the KS-statistic requires evaluations at each empirical response
time (e.g., 200 evaluations).

To illustrate this, 100 random sets of 200 responses were simulated from the “standard”
parameter sets from Table 1. The resulting distributions were used to recover parameter values
with different estimation procedures: The PDE algorithm and the IS algorithm were used in a
parameter search that was based on either the KS-statistic or on the χ2 statistic as optimisation
criterion. For the condition “PDE-KS” fast-dm-26 (Voss and Voss, in press) with precision 2.0
was used. For the other conditions, fast-dm was adapted accordingly: For the calculation of χ2

bins were chosen as done by Ratcliff (e.g., Ratcliff and Tuerlinckx, 2002) and for the calculation
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Table 2: Recoverd parameter values and processing times (means and SDs) from implementa-
tions based on different algorithms for the calculation of predicted CDFs and based on different
optimisation criteria (Experiment 2). Parameters were recovered from 100 simulated data sets
with 200 responses each (original values: a = 2.0, z = 0.5 a, v = 0.0, t0 = 0.2, sz = 0.0,
sv = 0.0, and st0 = 0.0).

CDF Opt.

Software calc. crit. a z v t0 sz sv st0 T [s]

fast-dma PDE KS 2.01 1.01 −0.00 0.25 0.64 0.29 0.25 4.51

(0.08) (0.09) (0.10) (0.03) (0.11) (0.12) (0.07) (1.08)

PDE χ2 2.03 1.01 0.00 0.27 0.66 0.29 0.24 5.41

(0.13) (0.09) (0.11) (0.05) (0.36) (0.25) (0.09) (1.60)

IS KS 2.02 1.01 0.00 0.24 0.62 0.29 0.25 10.79

(0.09) (0.11) (0.11) (0.05) (0.19) (0.19) (0.18) (12.14)

IS χ2 2.24 1.12 0.00 0.32 1.12 0.75 0.28 1.47

(0.28) (0.16) (0.17) (0.11) (0.87) (0.71) (0.20) (0.99)

DMAT IS χ2 3.07 1.53 −0.01 0.31 1.69 2.09 0.16 230.32b

(0.97) (0.50) (0.37) (0.11) (1.06) (1.53) (0.20) (565.57)

Notes: PDE = Partial Differential Equation approach; IS = Infinite Sum approach; KS = Kolmogorov-Smirnov statistic.
a Only the values from the first data row (PDE/KS) were calculated with the published version of fast-dm-26 (precision=2.0). For the
following rows, adapted versions of fast-dm were used.
b The long mean calculation time is based—partially—on some outliers (Tmax = 4171sec.). The median of the computation time was 24
seconds.

of the infinite sum, a copy of the underlying C-code (cdfdiff.c5) of DMAT (Vandekerkhove and
Tuerlinckx, 2007) was incorporated into fast-dm.

Additionally, the recovery procedure was repeated with DMAT (Vandekerkhove and Tuer-
linckx, 2007) as well. However, since other details of the parameter search (e.g., starting values
for the SIMPLEX search, termination criterion of the SIMPLEX search) are not identical be-
tween DMAT and fast-dm, it is problematic to interpret the results as a comparison of calculation
algorithms and optimisation criteria.

Table 2 shows the results of experiment 2.6 For the PDE approach the calculation time
does not vary much between KS and χ2. This is so because—independently of the optimisation
criterion—the complete CDF is calculated in each step of the SIMPLEX search. Accuracy of
the recovered parameters is also similar.

For the IS method, the duration of the estimation procedure is linked directly to the required
number of evaluations. Consequently, the IS method is slow when it is used in combination with
KS, and fast when used with χ2. Interestingly, the combination of IS and χ2 leads to poorer
results. Evidently, inaccuracies of both algorithms accumulate in an unfortunate way.

As mentioned above, the comparison with DMAT (Vandekerkhove and Tuerlinckx, 2007) has
limited explanatory power because the programs are very different in many aspects. Nonetheless,
the great differences between the IS/χ2 version of fast-dm and DMAT are surprising, since the
evaluations of the CDFs are based on the same code. There are several potential explanations
of the long processing times of DMAT : Firstly, there was small a number of very big values in
the calculation times. This was the case when the initial guess (i.e., the starting values for the
SIMPLEX search) of DMAT fitted badly. Secondly, the simplex was run more often by DMAT
(up to eight times when results were considered to be ‘suspect’) than by fast-dm (always three
times). Third, the execution of C-code from the MATLAB environment may be slower compared
to a ‘pure’ C-coded program. It remains unclear as well, why the results obtained from DMAT
are less accurate than the results of fast-dm in the IS/χ2 version.

6 Summary and Conclusions

In recent years the interest in diffusion model analysis has notably increased, an effect which
is undoubtedly related to the increasing computational power that is nowadays available—and

5We thank Joachim Vandekerkhove and Francis Tuerlinckx for providing the source code.
6The data sets, the control file for fast-dm (experiment.ctl), and the command file used for the DMAT approach

(DMAT.m) can be downloaded from
http://www.psychologie.uni-freiburg.de/Members/voss/fast-dm/materials
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affordable—for every researcher. Nonetheless, estimating the parameters of the complete diffu-
sion model for large numbers of participants and large numbers of trials is still a challenge for a
normal office PC.

In the present paper we introduce a new method, mathematically equivalent to the “classi-
cal” closed-form solution of eq. (2), to calculate the predicted RT-distributions of the diffusion
model. This new algorithm is based on the numerical solution of the PDE describing the diffu-
sion model. The numerical PDE approach requires slightly more mathematical understanding;
however, implementing it is worth the effort because parameter estimations that used to take
hours can be completed in only a few minutes with this approach. We applied the proposed
approach to the Kolmogorov-Smirnov method introduced by Voss et al. (2004), and to a χ2-
based parameter estimation. The PDE approach is especially apt for KS optimisation, because
in this case many values from the same CDF are needed. These values can be provided very
fast once the PDE has been solved. Nonetheless, the PDE methode can be implemented for the
more widely-used χ2 criterion as well. It is not in the scope of the present paper to compare the
efficiency of KS and χ2 approaches. However, it can be expected that KS is superior especially
for large samples, while no substantial differences are to be expected for large samples. The
efficency of the PDE method may prove useful to facilitate and speed up further research in this
area.

A The Kolmogorov Backward Equation

Since the partial differential equations for the distribution functions F+ and F− form the core
of the proposed method, and since the Kolmogorov backward equation in the form required for
our results is not easily found in the literature, we present here a complete proof of the fact that
F+ can be obtained as the solution of the given PDE.

We state the result for slightly more general diffusion processes than the Brownian motion
with constant drift considered in the previous sections. In our application we apply the theorem
for the constant drift function v(x) = v.

Theorem. Let Z be a solution of the stochastic differential equation (SDE)

dZt = v(Zt) dt + dBt, Z0 = z

where the drift v : R → R is C∞ with bounded first derivative, 0 ≤ z ≤ a, and B is a standard
Brownian motion. Let F+(t, z) be the probability that Z hits a before time t and before it hits 0.
Then F+ satisfies the PDE

∂

∂t
F+(t, z) =

1
2

∂2

∂z2
F+(t, z) + v

∂

∂z
F+(t, z) for all t > 0, 0 < z < a

with boundary conditions

F+(t, 0) = 0, F+(t, a) = 1 for all t > 0

and initial condition

F+(0, z) =
{

0 if 0 ≤ z < a and
1 if z = a.

Proof. Let 0 < t < T and D = (0, T )× (0, a) ⊆ R2. Define the two-dimensional process X
by Xs = (s, Zs) for all s ≥ 0. Then X solves the SDE

dXs =
(

1
v(Zs)

)
ds +

(
0 0
0 1

)
dB̃s

where B̃ is a two-dimensional standard Brownian motion. Furthermore, let S = inf{ s ≥ 0 |
Xs /∈ D } be the first exit time of X from the rectangle D, define a function f on the boundary
of D by f(s, z) = 1 if z = a and f(s, z) = 0 else, and let

φ(s, z) = Es,z

(
f(XS)

)
∀(s, z) ∈ [0, T ]× [0, a],
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where Es,z denotes the expectation for the process X starting at X0 = (s, z). Since f(XS) = 1
if and only if ZS = a, we have

F+(t, z) = φ(T − t, z). (3)

From Example 7.5.6 of Øksendal (1998) we know that φ satisfies

Aφ(s, z) = 0 ∀(s, z) ∈ D (4)

where the generator A is given by Theorem 7.5.4 in Øksendal (1998):

Aφ(s, z) = 1
∂

∂s
φ(s, z) + v(z)

∂

∂z
φ(s, z) +

1
2

∂2

∂z2
φ(s, z).

Here we used the fact that by elliptic regularisation (e.g., Hörmander, 1983, Theorem 13.4.1)
the solution of (4) is C∞ on D. By solving this relation for ∂

∂z φ(s, z) we find

∂

∂t
F+(t, z) = − ∂

∂s
φ(T − t, z) = v(z)

∂

∂z
φ(T − t, z) +

1
2

∂2

∂z2
φ(T − t, z)

= v(z)
∂

∂z
F+(t, z) +

1
2

∂2

∂z2
F+(t, z).

This is the required PDE. The fact that F+ satisfies the given boundary conditions and initial
conditions can be read off from the definition of φ using the relation (3).

The corresponding PDE for F−, the probability that Z hits 0 before time t and before it
hits a, can be obtained either by choosing f(s, z) = 1 if z = 0 and f(s, z) = 0 else in the proof,
or by the reflection argument presented in section 4.

B Numerical Solution of PDEs

The algortihm described in this article involves numerical solution of the parabolic PDE (1).
Solving PDEs numerically is a well-established topic both in mathematics and in applied areas.
There exists a vast body of literature and there are also many ‘black box’ PDE solvers available
(e.g. the PDE toolbox of Matlab). Nevertheless, in order to keep the text as self-contained as
possible, we give here a rough sketch of the numerical method used in our own implementation
“fast-dm” (Voss and Voss, in press). For a more detailed description we refer to the following
text books: the theoretical background is described in Boyce and DiPrima (2001) for ordinary
differential equations and Strauss (1992) for PDEs. How to solve these equations numerically
is, for example, described in Iserles (1996) for ordinary differential equations and Morton and
Mayers (1994) for PDEs. A short and very accessible exposition can also be found in Press,
Teukolsky, and Vetterling (1992, chapter 19).

The key to the numerical solution of PDEs such as eq. (1) by using finite difference methods
is to discretise ‘space’ z and time t: instead of the full z-interval [0, a] we only consider the
discrete set of z-values {0,∆z, 2∆z, . . . , N∆z} where ∆z = a/N for some positive integer N and
instead of the t-interval [0,∞) we only consider the t-values {0,∆t, 2∆t, . . .}. The algorithm
computes values Fi,j which approximate the true solution F+ by

Fij ≈ F+(i∆t, j∆z) for i = 0, 1, 2, . . . and j = 0, 1, . . . , N .

The accuracy of this approximation depends on the step sizes ∆t and ∆z. The smaller these
values are, the more accurate is the approximation (and the more expensive is the algorithm).

The algorithm works by considering a grid row with fixed t at a time, starting with an
approximation of the initial condition (1c):

(F00, . . . , F0N ) = (0, . . . , 0, 1).

Then, in each step, the algorithm uses the approximation (Fi0, . . . , FiN ) for time i∆t to compute
an approximation for time (i + 1)∆t.

9



To simplify the presentation we consider the function

u(t, z) = F+(t, z)− 1− exp(−2vz)
1− exp(−2va)

instead of F+ for the remaining part of the section. A simple calculation shows that u solves
that same PDE as F+, but with homogeneous boundary conditions u(t, 0) = u(t, a) = 0 instead
of (1b). Again, we denote the computed solution for time n∆t by un = (un

1 , . . . , un
N−1). We do

not include the outermost points un
0 and un

N since these are always zero due to the boundary
conditions.

The partial derivatives present in the PDE are approximated by the following finite differ-
ences:

∂

∂t
u ≈ u(t + ∆t, z)− u(t, z)

∆t
,

∂

∂z
u ≈ u(t, z + ∆z)− u(t, z −∆z)

2∆z
,

∂2

∂z2
u ≈ u(t, z + ∆z)− 2u(t, z) + u(t, z −∆z)

∆z2 .

Using these approximations we can then write the application of the differential operator

L =
1
2

∂2

∂z2
+ v

∂

∂z
(5)

as a matrix vector multiplication: collecting all the terms we get

Lu(n∆t, · ) ≈ LNun

where LN is the tri-diagonal matrix given by

LN =

 − 2
2∆z2

1
2∆z2 + v

2∆z
1

2∆z2 − v
2∆z − 2

2∆z2
1

2∆z2 + v
2∆z

1
2∆z2 − v

2∆z − 2
2∆z2

 ∈ R(N−1)×(N−1).

The middle row in this matrix is repeated along the diagonal N − 3 times in order to get the
full matrix.

The approximations introduced above suggest the following approximation to the PDE:

un+1 − un

∆t
= LN

(
θun+1 + (1− θ)un

)
(6)

where θ ∈ [0, 1] is a parameter of the method. For θ = 0 the derivative on the right hand side is
evaluated only for the current approximation un. For all values θ > 0 the derivative is evaluated
for a mixture of un and un+1. In these cases one has to solve a system of linear equations to
compute un+1 from un: by rearranging the terms in (6) we get(

I −∆tθLN
)
un+1 =

(
I + ∆t(1− θ)LN

)
un (7)

where I is the (N − 1) × (N − 1) identity matrix. As we will discuss below, the choice of
the parameter θ affects the stability of the method. Common choices are θ = 0 (Euler scheme),
θ = 1/2 (Crank Nicolson scheme) and θ = 1 (implicit Euler scheme). In our own implementation
we use the Crank Nicolson method.

In order to understand stability and convergence of the resulting method, it is useful to
consider the Fourier transform of the solution: one can check that the differential operator L
from (5) has eigenvalues λk = − 1

2 (π2k2 +v2) and that the corresponding eigenfunctions fk(z) =
sin(πkz)e−vz for k = 1, 2, . . . form a basis of the space of square integrable functions. It transpires
that the eigenvalues λN

1 , . . . , λN
N−1 of the approximation LN are still strictly negative and that the

corresponding eigenvectors vN
1 , . . . , vN

N−1 form a basis of RN−1. We express the approximations
un in this basis as

un =
N−1∑
i=1

αn
i vN

i .
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Substituting this into (7) and using the relation LNvN
i = λN

i vN
i , we find the the time evolution

of the coefficients αn
i is given by

αn+1
i =

1 + ∆t(1− θ)λN
i

1−∆tθλN
i

αn
i =: qiα

n
i (8)

for all i = 1, . . . , N − 1, n ∈ N, where the α0
i are found from the intial condition.

The method is stable if all coefficients qi in (8) satisfy |qi| < 1 (for |qi| > 1 the coefficients αn
i

grow exponentially). Using the fact that the λN
i are negative, we find that |qi| < 1 is equivalent

to the condition
∆t(1− 2θ) < − 2

λN
i

∀i = 1, . . . , N − 1,

where the right hand side is positive. For θ ≥ 1/2 this relation is always satisfied and thus
the method is stable, independently of the choice of ∆t. For θ < 1/2 one gets a bound on ∆t,
depending on the smallest of the λN

i . A more detailed analysis shows that this eigenvalue is
approximately equal to −4/∆z2 (with exact equality for v = 0) and thus for θ < 1/2 the method
is stable only if ∆t < 1

2(1−2θ)∆z2.
Convergence of the method to the correct result must be proved separatly from stability. It

is a consequence of the fact that the biggest eigenvalue of LN is bounded away from 0, uniformly
in N . Here we restrict discussion to the following observation: since we subtracted the stable
solution of the PDE when switching from F+ to u, the exact solution u converges to 0 as t →∞.
To get an approximation for the solution at time t = n∆t > 0 we need to perform t/∆t steps of
the discretised method. Using the approximation qi = 1 + ∆tλN

i + O(∆t2), the coefficients are
then

αn
i ≈ (1 + ∆tλN

i )t/∆t → exp(λN
i t)

as ∆t ↓ 0 and thus the solution of the numerical scheme also converges to 0 as t → ∞. This
shows that the discrete solution converges to the exact result at least asymptotically for t →∞.
A similar argument can be used to show convergence of the method for every fixed t.

We conclude by emphasising that the Crank-Nicolson method used in our implementation
is only one of many possible methods. For example, since the eigenvalues and eigenfunctions of
the operator L are explicitly known, one could use spectral methods. These methods are closer
in spirit to the infinite sum method.
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