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Abstract

Diffusion-model data analysis permits disentangling different processes underlying the effects 
of experimental manipulations.  Estimates can be provided for the speed of information 
accumulation, for the amount of information used to draw conclusions, and for a decision 
bias.  One parameter describes the duration of non-decisional processes including the duration 
of motor-response execution.  In the standard diffusion model, it is implicitly assumed that 
both responses are executed with the same speed.  In some applications of the diffusion 
model, this assumption will be violated. This will lead to a bias of parameter estimates. 
Consequently, we suggest accounting explicitly for differences in the speed of response 
execution for both responses.  Results from a simulation study illustrate that parameter 
estimates from the standard model are biased if the speed of response execution differs 
between responses.  A second simulation study shows that large trial numbers (N>1000) are 
needed to detect whether differences in response-execution times are based on different 
execution times.
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Separating Response-Execution Bias from Decision Bias: 
Arguments for an Additional Parameter in Ratcliff’s Diffusion 

Model

In this paper, we consider the diffusion model for fast binary decisions (Ratcliff, 
1978).  The model maps cognitive processes on different model parameters. Most important 
are the speed of information intake (drift rate) and the amount of information that is required 
to come to a decision (threshold).  The model also captures biases in decisions. Such decision 
biases are mapped on the starting point of the diffusion process.  Biases in starting point are 
often referred to as response biases (drawing on the analogous concept from Signal Detection 
Theory; MacMillan & Creelman, 1991), reflecting that one response is preferred over the 
other response. However, we consider the label “response bias” to be misleading, because the 
starting point influences the decision process rather than response execution. Consequently, 
we denote biases based on the starting point as decision biases. 

In Ratcliff’s model, the total response time is composed of the decision time as 
described by the diffusion process, and a non-decision component that comprises processes of 
encoding and response execution.  In previous applications of the diffusion model it has 
always been—implicitly—assumed that non-decision components are equal for both 
alternative responses.  However, this assumption may be violated in many psychological 
tasks.  Consider, for example, research on response priming (e.g., Elsner & Hommel, 2001) or 
response repetition effects (e.g., Campbell & Proctor, 1983): In these domains, the main 
hypotheses posit that a primed or repeated response is executed faster compared to a non-
primed or non-repeated response.  In this paper, we will denote such differences in the speed 
of response execution between alternative responses as a response-execution bias or response 
tendency.  This bias is theoretically independent of the decision bias discussed above, 
although both may often be elicited by the same tasks and may therefore occur 
simultaneously.

As we will show, parameters estimated with the standard diffusion model (i.e., without 
modelling response-execution biases) might be notably distorted if a response-execution bias 
is inherent in the data.  To allow explicitly mapping such a bias possible, we propose to 
extend the diffusion model by including an additional parameter.

The Diffusion Model and Predicted Response-Time 
Distributions

The Rationale of the Diffusion Model

In this section, we will provide a short introduction to Ratcliff’s diffusion model (e.g. Ratcliff, 
1978; Ratcliff & Rouder, 1998; Ratcliff & Smith, 2004; Voss, Rothermund, & Voss, 2004). 
Reviews of recent developments in this area are provided by Wagenmakers (in press) and by 
Ratcliff and McKoon (2008).

The diffusion model is used to describe fast binary decisions. According to the model, 
information is accumulated continuously until evidence is sufficiently clear.  The information 
accumulation is characterised by a constant drift and random noise.  Two thresholds (for the 
two alternative decisions) form a corridor, in which the process runs until one of the 
thresholds is hit. Then the response is initiated.
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The diffusion model in its simplest form (see Figure 1) is characterised by the drift rate 
(v), threshold separation (a), starting point (z), and response-time constant (to).1  We will first 
introduce this simple model before discussing the role of additional inter-trial-variability 
parameters. 

The average rate of information uptake is called the drift rate (v).  Large drift rates 
result in fast decisions and few errors.  The distance between thresholds (a) reflects the 
amount of information that is necessary to come to a conclusion.  A large span between 
thresholds indicates a conservative decision style, that is, the decision is based on a large 
amount of information.  In this case, the decision making is slow and few errors occur.  A 
liberal decision style is represented by a small distance between thresholds.

 In some cases, different amounts of information may be used for the alternative 
decision outcomes.  This is reflected by the starting point of the diffusion process (z).  If the 
process starts above a/2, comparatively less information is sufficient to come to the decision 
outcome associated with the upper threshold (decision A), while more information supporting 
B is needed before this decision is initiated.  If the starting point is closer to the upper 
threshold, mean response times (RTs) of the response connected to the upper threshold will be 
shorter than the mean RTs of the other response.  Simultaneously, the portion of responses 
connected to the upper threshold will increase with increasing starting point.  In the simple 
diffusion model, any difference in mean response times between lower and upper distributions 
is mapped on the z parameter.

The last parameter of the simple diffusion model is the response-time constant (t0). 
This parameter comprises all extra-decision processes, that is pre-decision components (e.g., 
stimulus encoding) and post-decision processes (e.g., response execution).  Response times 
are modelled as the sum of decision times and response-time constant.  Therefore, t0 equally 
contributes to correct and error RTs.

Ratcliff’s complete diffusion model allows for inter-trial variability of drift, starting 
point, and response-time constant.  These parameters influence the shape of the predicted RT 
distributions, and can account for small differences in the mean RTs of correct responses and 
errors (e.g., Ratcliff & Rouder, 1998):  Inter-trial variability of the starting point can explain 
fast error responses, while inter-trial variability of the drift causes slow errors.

Applications of the Diffusion Model

The diffusion model has been applied successfully to a variety of tasks (see Spaniol, 
Madden, & Voss, 2006, for a review).  One main field of application is the analysis of aging 
effects on cognitive processes (e.g., Ratcliff, Thapar, & McKoon, 2006, 2007).  In this domain 
research focuses on the question whether slowing of RTs is based on slower information 
processing (drift), on slower response execution (RT constant), or on a more conservative 
decision style (threshold). One main result is that age-related slowing in cognitive tasks is in 
large part due to conservative threshold settings and slower motor responses, while cognitive 
processing is often quite robust.

Other applications aim at improving the understanding of specific cognitive tasks:  For 
example, Klauer, Voss, Schmitz, and Teige-Mocigemba (2007) analysed data from the 
Implicit Association Test (IAT; Greenwald, McGhee, & Schwartz, 1998) with a diffusion-
model analysis:  Results of these analyses helped to clarify why different test blocks have 
different difficulties.  In the same study, the inter-individual differences in parameter values 
were used successfully to predict explicit attitudes.  This hints that the diffusion model may be 
used as a diagnostic tool (Schmiedek, Oberauer, Wilhelm, Süß, & Wittmann, 2007).

1 Additionally, the diffusion process is characterised by the amount of noise.  This is reflected by the diffusion 
constant, which operates as a scaling parameter. The diffusion constant is not estimated but can be freely 
chosen.
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There is a growing number of further applications of the diffusion model (see 
Wagenmakers, in press).  The model is likely to become even more popular, due to recent 
publications of different software tools for diffusion-model analyses (fast-dm: Voss & Voss, 
2007; dmat: Vandekerckhove, & Tuerlinckx, 2007, 2008; EZ-diffusion, Wagenmakers, Van der 
Maas, & Grasman, 2007; Wagenmakers, van der Maas, Dolan, & Grasman, 2008).

Mapping Response Tendencies: A Second Response-Time 
Constant

The diffusion model as described above might be used to detect decision biases.  Consider, for 
example, the results of Voss, Rothermund, and Brandtstädter (2008): They showed within a 
motivated-perception design that participants were more liberal in the decision that an 
ambiguous stimulus is positive (i.e., a small amount of information is enough) and 
participants were more conservative in classifying a stimulus as negative (i.e., a high amount 
of information is used).  In the diffusion model, this effect is reflected by a starting point 
which is close to the “positive” threshold.

The observed starting-point asymmetry in the data of Voss et al. (2008) is ultimately a 
consequence of shorter RTs for positive decisions (i.e., when a stimulus was classified as 
positive). In the diffusion model, differences in mean RTs between two alternative responses 
always map on the starting-point parameter (z), indicating different response criteria (Ratcliff, 
1985).2  However, different response criteria are not the only theoretically plausible source of 
differences in mean RTs between two alternative responses.  Imagine, for example, a task in 
which stimuli have to be classified by pressing a key to the right-hand side or to the left-hand 
side of a keyboard, respectively.  Independent of the classification rules, a right-handed 
person may be faster with the “right” response compared to the “left” response.  If this would 
be mapped on the starting-point parameter, one would conclude that a more liberal criterion is 
associated with the corresponding decision.  From a theoretical point of view, however, an 
effect of handedness is based on speed of response execution.

There are different psychological paradigms in which response facilitation or response 
inhibition are discussed as explanations of the observed effects (cf. affective priming: Fazio, 
Sanbonmatsu, Powell, & Kardes, 1986; flanker task: Eriksen, Coles, Morris, & O'Hara, 
1985)3.  In its standard form, the diffusion model is unable to map response tendencies and it 
is therefore not possible to test contrasting approaches against each other (e.g., enhanced 
perception vs. speeded response execution). Notice, that both approaches predict differences 
in latencies between responses.  Therefore, we suggest applying different response-time 
constants for the two responses:  In the extended model the RT-constant t0, upper is added to the 
decision time if the process terminates at the upper threshold, and t0, lower is added for all 
responses at the lower threshold.  We will recode these parameters as t0 = 0.5(t0, upper + t0, lower) 
and d = t0, lower - t0, upper.  Hence, t0 reflects the mean RT constant, and d reflects the response-
execution bias. In the extended model, differences in mean RTs for the two responses can be 
either mapped by asymmetries in criteria (decision bias) or by asymmetries in response-
execution times (response-execution bias). 

2 If data are analyzed in terms of correct versus erroneous responses (rather than response “A” vs. response  
“B”) differences in mean RTs can be captured to a certain degree by the inter-trial variability of starting point  
or drift as well (Ratcliff & Rouder, 1998).  However, inter-trial variability cannot explain that—for example
—response “A” is always faster than response “B”, if this pattern holds for stimuli of type A (response “A” is 
correct) and of type B (response “B” is correct).

3 However, the response-execution bias can only explain effects in RT data and not in accuracy data.  Since 
there are accuracy effects in affective priming, response-execution biases cannot explain the total effect.
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Simulation Study 1: Recovering Parameter Values

The aim of this study is to test whether parameter values could be recovered reliably with the 
extended model. For this purpose, data sets were simulated from four parameter sets, 
including (a) no bias in starting point or RT-constants, (b) a bias in starting point but not in 
RT-constants, (c) a bias in RT-constants but not in starting point and, (d) both types of bias. 
From these simulated data sets parameters were re-estimated using models with different 
restrictions. 

Simulating data sets

Table 1 shows the parameter values used for the simulation of data sets.  Parameter-set 1 
represents a symmetric model without response-execution bias or starting-point bias. In 
parameter sets 2 and 4 the starting point z lies above a/2, indicating a decision bias in favour 
of response A (upper threshold).  In parameter sets 3 and 4 a response-execution bias is 
simulated: Response A is executed 50 ms faster compared to response B. 

From each of the four parameter sets of Table 1, 100 data sets with 500 trials each 
(half of the trials using v1 and half using v2) were simulated using an adapted version of the 
construct-samples tool of fast-dm release 29 (Voss & Voss, 2007; precision = 5.0).

Re-estimating parameter values

From each of the 400 simulated data sets, parameters were re-estimated using an adaption of 
fast-dm-29 (precision = 4.0).4  For each data set parameters for four models with different 
restrictions were fitted: In the “fixed” model, neither decision bias nor response-execution 
bias were allowed (z=a/2 and d=0). For the second model, only a response-execution bias was 
prevented (d=0). The third model did not allow for a decision bias (z =a/2). Finally, the 
“complete” model estimated both z and d.  In summary, each of the 4 (parameter sets) × 100 
data sets was analyzed with 4 (parameter constraints) different estimation procedures.  The 
different restrictions were used to test the effect of “wrong” restrictions (e.g., fixing d=0, 
when d=0.05 in the original data set).  Additionally, it was thus possible to test whether the 
“true” source of RT differences between both responses could be identified.

Means and standard deviations for the parameter estimates are presented in the Figures 
2 and 3.  Panels A to D show results from parameter sets without biases (panel A), with a 
decision bias on the starting point (panel B), with a response-execution bias (panel C), and 
with both types of biases (panel D).  The estimates for the variability parameters are presented 
in Table 2.

Parameter Set 1: No Bias

Panel A of Figure 2 shows the mean estimates for data from parameter set 1.  All parameters 
were estimated accurately by all four models.  This was expected, because no restrictions 
conflicted with the original parameter values.

4 Inclusion of a second response time constant in fast-dm is a relatively small change and will be included in 
one of the next releases of the program.  A problem arises if the Kolmogorov-Smirnov Statistic (i.e., the 
maximum vertical distance between predicted and observed CDF) is used as an optimisation criterion: In the 
extended model, changing a single RT constant influences only one of the two predicted RT distributions 
(upper or lower).  Thus, when the point of maximum distance and the changed RT constant correspond to 
opposite sides, the KS-statistic will be unaffected by changes of one of the RT constants within a certain 
range and minimising the vertical distance no longer results in unique parameter values.  To solve this 
problem the sum of the maximum vertical distances of the upper and the lower distribution was used as 
minimisation criterion.
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Parameter Set 2: Decision Bias

In parameter set 2, the starting point was biased towards the upper threshold.  Therefore, 
restrictions in the Models 1 and 3 (z = a/2) do not allow an accurate recovering of the original 
values.  As evident in panel B of Figure 2, an erroneous restriction of the starting point leads 
to a biased estimation of drift rates, that is, the low starting-point value results in an inflation 
of the estimates for the drift.  If z was restricted, but the response-execution bias parameter d 
was estimated (Model 3), an erroneous response-execution bias of 50 ms was estimated.  In 
the complete model (Model 4), the mean estimates for the starting point and response-
execution bias were close to the correct values.

Parameter Set 3: Response-Execution Bias

Parameter-set 3 represents the critical case of data sets with inherent response tendencies 
(d=0.05).  Panel C of Figure 3 depicts the results of the parameter estimation procedure.  In 
the standard analysis (d=0), the starting point is notably overestimated, while the estimates for 
the drift rate fall below the true values.  The models accounting for d yield much more precise 
results.  However, if z is not fixed to the correct value, then the bias is dispersed to a certain 
degree between z and d, that is, results show a bias in z (although there was none in the data), 
while the estimate for the response-execution bias falls short of the true value of 50 ms.

Parameter Set 4: Decision Bias and Response-Execution Bias

Panel D of Figure 3 depicts the results for the data sets with decision bias and response-
execution bias.  The restricted models show the compensatory effects of both bias parameters: 
In the model without response-execution bias (d=0), the decision bias is overestimated 
(z>0.65); in the model without decision bias (z=a/2), the response-execution bias is 
overestimated (d>0.05).  Estimates are most accurate in the complete model accounting for 
both types of biases.  However, in the complete model again the estimates for the response-
execution bias are too low.

Model Fit

The optimisation criterion of fast-dm, that is, the Kolmogorov-Smirnov statistic (KS) is 
reported here as an indicator for model fit (Voss, Rothermund, & Voss, 2004).  Separate KS-
values were computed for the two trial types (v1 vs. v2).  Table 3 shows the mean KS values 
across both trial types.  Low values indicate a good model fit.  The model without biases is 
taken as a baseline condition here.  Accordingly, a KS value below .030 is regarded as a good 
model fit.  As evident in Table 2, the fit-index exceeds this value in each case in which a 
model restriction violated original values from parameter sets.

Discussion

Study 1 was conducted to demonstrate that incorrect restrictions in the diffusion model result 
in notably biased parameter estimates.  Specifically, this was illustrated for the case of 
response-execution biases, that is, for a situation in which one response is executed faster than 
the alternative response.  Standard diffusion model analyses so far did not account for 
differences in speed of response execution.

A response-execution bias that is not accounted for by the model is mapped on a 
(congruent) bias on starting point and—simultaneously—on an (incongruent) bias on the drift 
(see Ratcliff & McKoon, 2008, for a discussion of the criterion of drift rates).  For example, 
when the response linked to the upper threshold is executed faster, and this is not mapped in 
the model, the starting point will be overestimated and the drift will be underestimated.

Results also evidence difficulties of estimating d and z at once, even in data sets with 
500 trials as used in the present studies. However, the comparison of fit indices showed that 

6



on average models accounting for the “correct” type of bias had a slightly better fit.  We 
investigate this issue more closely in Study 2.

Simulation Study 2: Identifying Response-Execution Biases in 
Individual Data Sets.

Study 1 showed that it can be challenging to get reliable estimates for z and d simultaneously. 
Including both parameters makes the model so flexible that the solution of a parameter search 
is not robust. Therefore, we recommend using models that either allow for starting-point 
asymmetries or for response-execution biases, but not for both kinds of bias. Study 2 
systematically examines how many trials are needed to reliably decide which of these two 
models better accounts for an individual data set.  For this purpose, 1000 data sets were 
simulated from parameter sets with starting-point asymmetries (but no response-execution 
bias) and from parameter sets with response-execution bias (but no bias on starting point) for 
four different sample sizes (500, 1000, 2000, and 5000 trials per data set).  Subsequently, fit-
indices were compared between these two models.  Model fit was assessed using the KS-
statistic.

Simulating Data Sets and Re-Estimating Parameter Values

In a first step, 1000 parameter sets were generated by randomly drawing values for a, v1, v2, t0, 
sz, sv, and st0 from uniform distributions (see Table 4).  From each of these parameter set, two 
models were derived: For the starting-point bias model, z was calculated as 0.65a, and d was 
set to 0. For the response-execution model, d was set to 0.05 seconds, and z was set to 0.5a. 
For all parameter sets and both models, data sets with 500, 1000, 2000, and 5000 trials were 
simulated using a modified version of the construct-samples (precision = 4) tool of fast-dm. In 
each case, two stimulus types were simulated, that is v1 and v2, respectively, were used for half 
of the trials of each data set.

From each of the resulting 8000 data sets, two parameter sets were re-estimated using 
an adapted version of fast-dm (precision = 3), whereat either z was fixed to 0.5a (response-
execution model) or d was fixed to 0 (starting-point bias model).

Results

Each data set was analysed regarding whether the response-execution model or starting-point  
bias model fitted the data better in terms of the KS-statistic. Figure 4 shows the frequency of 
false classifications as a function of the original model and sample size.  As expected, the 
probability of false model selection declines with increasing number of trials. Results indicate 
that a response-execution bias of d=.05 is more often correctly classified compared to a 
starting-point bias of z=0.65a. In the former case, ca. 900 trials are sufficient for 95% correct 
classifications, while in the latter case about 1750 trials are needed to achieve the same 
accuracy.

Discussion

Study 2 demonstrates that is possible to decide for an individual data set whether a bias in 
mean response times is based on differences in response execution (response-execution bias) 
or on differences in information accumulation (starting point bias).  Because the diffusion 
model very flexible accounts for different shapes of RT-distributions (especially if the 
variability parameters are included), many trials are needed to allow for reliable separation of 
both models: Results of the present experiment indicate that at least 1000 trials are needed, 
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even in the case of large effects (i.e., about 50ms difference between mean latencies for the 
two responses).  To get an estimate for the number of trials required when effects are notably 
smaller, similar simulation studies can be repeated for other parameter sets.

Model Mimicry: Locating the Effect of Wrong Parameter 
Specifications in the RT Distributions

As shown above, it is difficult to separate the response-execution bias model from the 
starting-point bias model. That is, even if there are invalid model specifications (e.g., d=0), 
the “wrong” model can mimic the empiric RT distribution. In this section, we further analyze 
where exactly the predicted RT-distribution differs from the empiric distributions in case of 
wrong specifications.

For this purpose, two “non-random” data sets were simulated5 for parameter sets using 
the means of the parameter distributions of Study 2 (a=1.05; v1=2.50; v2=-2.50; t0=0.300; 
sz=0.13; sv=0.50; st0=0.05) one set with d=0.05 and z=0.50a and one set with d=0 and z = 
0.65a (N = 10000 trials, half of these based on v1 and half based on v2, respectively). 
Parameters were re-estimated using “wrong” restrictions, that is, fixing d=0 for the data 
generated based on the response-execution bias model and fixing z=0.5a for the data 
generated on basis of the starting-point bias model.

Distributions of the data were compared with predicted distributions from the 
recovered parameters.  For this purpose, so-called combined cumulative distribution functions 
(cCDF; see Voss et al, 2004; Voss & Voss, 2008) were used.  The cCDF-graphs combine the 
RT distributions for the two responses by mapping the times from the lower distribution of the 
diffusion model on the negative half-axis.  The lower distribution is mirror-imaged, that is, the 
tail of the distribution is depicted on the far left of the graph and the starting edge of the RT 
distribution appears close to the origin (Figure 5). The height of the plateau around zero 
indicates the total mass of the lower distribution.

Figure 5 shows the cCDFs of original parameters and of parameter estimates from the 
models with restriction that are incompatible with the fitted data. Despite the wrong 
restrictions, deviations are rather small: Especially the leading edges of the RT distributions 
are recovered very well. The strongest deviations are evident at the tails of the RT 
distributions: For the response-execution bias model, the predicted cCdF of stimulus 1 
approaches 0 on the left-hand side and 1 on the right hand side more slowly than the cCdF of 
the original data.  That is, the predicted number of slow responses exceeds the actual number. 
The opposite is true for stimulus 2: Here, the predicted cCdF approaches 0 and 1 faster than 
the original cCdF, that is, the tails of the RT-distributions are underestimated. The pattern of 
results is reversed for the starting-point bias model: Here, the tails of distributions are 
underestimated for stimulus 1 and overestimated for stimulus 2.

In summary, these graphs suggest that the tails of RT distributions might be especially 
indicative for these kinds of biases: To make a decision, one has to consider separately stimuli 
corresponding to the faster response and stimuli corresponding to the slower response: If the 
percentage of slow responses is overestimated for stimuli requiring the faster response and the 
percentage of slow responses is underestimated for stimuli requiring the alternate response, 
this may be taken as an indicator for an unaccounted response-execution bias. The opposite 
pattern of results, that is, an underestimation of slow latencies for the stimuli with fast 
responses and vice versa suggests that there might be a decision bias in the data.

However, we emphasise that the location of mismatch between data distributions and 
predicted distributions might strongly depend on the optimisation criteria: The application of 

5 The data points were located on a grid of regularly spaced quantiles of the predicted distributions.
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the KS statistic leads to a nearly exact recovery of the leading edges of the RT distributions of 
correct responses, which comes at the cost of a poor recovery of the last quantiles of the RT 
distributions, and—generally—of error distributions. This might be different if, for example, 
the Chi² statistic was applied.

General Discussion

In this paper, we introduced an extension to Ratcliff’s (1978) diffusion model.  In the standard 
diffusion model, the assumption is implicitly made that there is no (systematic) difference 
between the speed of execution of both possible responses. The model’s extension aims to 
allow mapping differences in speed of response execution for the two different responses. 
With estimation procedures using the standard model (e.g., fast-dm: Voss & Voss, 2007, 2008; 
dmat: Vandekerckhove & Tuerlinckx, 2007, 2008), differences in response speed between 
conditions can be mapped, if the t0 parameter is allowed to vary between conditions. 
However, in this case, t0 depends on condition and not on response, that is, within each 
condition again the same execution time is assumed for the two alternative responses “A” and 
“B”.

Simulation Study 1 investigates the effects of wrong model restrictions (especially the 
assumption that there is no response-execution bias) and checks whether it is possible to 
recover a response-execution bias accurately.  Results indicate that outcomes of a diffusion-
model analysis are seriously affected if an existing response-execution bias is not 
incorporated in the model.  Specifically, the estimate for the starting point will be biased 
towards the threshold linked to the faster response, while the drift will be biased in the 
opposite direction.  At the same time, our findings demonstrate that it might be challenging to 
estimate both d and z simultaneously.  One strategy to deal with this problem is the 
comparison of model fit between models that account either for a starting-point bias or for a 
response-execution bias.  Unfortunately, there is no exact way to test whether the inclusion of 
a new parameter improves the fit significantly.  However, rules-of-thumb can be generated to 
decide which restrictions are sensible.  If the fit between models differs only a little (e.g. by 
less than 1 SD; see Table 3), the more parsimonious model should be chosen (if the number of 
parameters is equal, of course the better fitting model is chosen). If the difference in fit is 
large (e.g., more than 1 SD), the inclusion of the additional parameter seems to be justified. 
Of course, this heuristic is developed post-hoc and needs to be tested with broader simulation 
studies, including other parameter values and trial numbers.

While the heuristic explicated above allows for comparison of model fit for a group of 
participants, it does not help to decide for an individual data set whether the decision-bias 
model or the response-execution model accounts for the data better. For this purpose, in 
simulation Study 2 we examined how many trials were needed to ensure that the true model 
resulted in a better model fit with a probability of p=.95.  Results indicated that N=1000 to 
2000 trials were needed to reliably detect the true model, even for large asymmetries as used 
in the present study.  Consequently, for many psychological experiments the collected amount 
of data will not suffice to detect a moderate response-execution bias.  It might be helpful to 
compare fit indices at a group level, which was successful in Study 1.  If data sets are even 
smaller (N<500), the problem of discrimination between the alternate models obviously 
becomes even more severe.

Potential Biases of Parameter Estimates from the Standard Model

How can the biases of the parameter estimates from the standard model be explained?  To 
answer this question one must have a look on the influence of the diffusion model’s parameter 
on the predicted response times:  First of all, it is important to note that the drift rate has 
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parallel effects on predicted RTs for correct responses and errors:  The larger the drift, the 
faster the mean response times. As long as the starting point is symmetrical (z=0.5 a) and all 
inter-trial variabilities are zero, the predicted RTs for errors and correct responses are exactly 
identical.  There is, however, a strong influence of the starting point on predicted RTs: If the 
starting point moves upward, the predicted exit times for the upper threshold decrease, and 
times for the lower threshold increase.  To put it the other way around, if there is an empirical 
difference in mean RTs, the standard diffusion model will map this on the starting point.

By moving the starting point, differences in mean RTs of the upper and lower 
threshold can be accommodated.  However, moving the starting point upward increases the 
percentage of predicted responses for the upper threshold. If the asymmetric starting point is 
an artifact, that is, if it is not based on real different threshold settings for the information 
accumulation, the number of predicted responses will be overestimated at the threshold 
towards which the starting point has moved.  In the multi-dimensional parameter search this 
will be compensated for by an opposite effect on drift rate. In summary, if response “B” is 
delayed, the starting point will be biased towards “A” and the drift will be biased towards 
“B”.

Potential Benefits of Additional Information from the Extended Model

In the above discussion we concentrated on drawbacks for the validity of the parameter 
estimates (especially for z and v) if only one RT constant is adopted.  However, this is not the 
only—and perhaps not the most important—reason to use the extended diffusion model.  The 
most fundamental benefit of the extended model is that it allows for testing new empirical 
hypotheses.  For any theory predicting response preparation, response facilitation, response 
inhibition, or response conflicts, the crucial tests regard differences in the speed of execution 
of the alternative responses (but see Footnote 3).  For this purpose, different RT-constants as 
implemented in the extended diffusion model are required.

Imagine, for example, the case of affective priming (Fazio et al., 1986).  There is a 
lively debate about whether this effect is equivalent to semantic priming (i.e., the prime pre-
activates the target-concept via spreading activation), or whether affective priming works 
similar to response priming (i.e., the prime prepares a specific response).  In the former case, 
an affectively congruent priming should facilitate target perception (i.e., increase the drift),  
while in the latter case, a congruent prime should decrease the RT constant of the correct 
response (and increase the RT constant of the alternative response).  With the extended model 
it is possible to differentiate between these hypotheses empirically.  Note, however, that 
response execution alone cannot explain the complete affective priming effect, if effects are 
not limited to RTs but are also present in errors.

One caveat concerns the interpretation of the RT constant. The RT-constants map all 
non-decision parts of information processing, that is, stimulus encoding as well as response 
execution.  Therefore, it is theoretically possible that differences between the RT-constants are 
based on differences in encoding times.  However, in most experimental designs, stimuli do 
not differ in complexity, and no large differences in encoding times are to be expected.

We are optimistic that the extension of the diffusion model might prove useful for 
analysing data from many psychological paradigms.  To make this kind of analysis accessible 
to a broader community of researchers, the model’s extension will be implemented in one of 
the next releases of the fast-dm software (Voss & Voss, 2007; available from 
http://www.psychologie.uni-freiburg.de/Members/voss/fast-dm).
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Tables

Table 1. Parameter values used for the simulation of data sets (study 1). Moderate variability 
was assumed (sz = 0.2; sv = 0.5; st0 = 0.1).

Parameter Set
Parameter 1 2 3 4
Threshold separation a = 1.00 a = 1.00 a = 1.00 a = 1.00
Starting point z = 0.50 z = 0.65 z = 0.50 z = 0.65
Drift rate 1 v1 = 1.00 v1 = 1.00 v1 = 1.00 v1 = 1.00
Drift rate 2 v2 = -1.00 v2 = -1.00 v2 = -1.00 v2 = -1.00
RT-constant t0 = 0.400 t0 = 0.400 t0 = 0.400 t0 = 0.400
RT-bias d = 0.000 d = 0.000 d = 0.050 d = 0.050
Note. A diffusion constant of s = 1 was adopted. If other diffusion constants are of interest 
parameters a, z, and v can be transformed by multiplication with the new value of s.
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Table 2. Means and SDs of inter-trial variability of starting point (sz), drift rate (sv), and RT 
constant (st0) as a function of parameter set and model restrictions (results from Study 1).

Parameter-set
1 2 3 4

Restrictions M SD M SD M SD M SD
Fixed

sz 0.37 0.13 0.21 0.17 0.45 0.26 .45 .27
sv 0.54 0.40 0.48 0.18 0.88 0.80 .88 .80
st0 0.07 0.06 0.11 0.06 0.02 0.03 .02 .03

d=0
sz 0.35 0.09 0.30 0.14 0.20 0.14 .20 .15
sv 0.54 0.33 0.26 0.11 0.97 0.38 .97 .38
st0 0.04 0.04 0.06 0.04 0.06 0.03 .06 .03

z=0.5
sz 0.36 0.10 0.24 0.15 0.21 0.21 .21 .21
sv 0.53 0.39 0.25 0.14 0.71 0.60 .71 .60
st0 0.06 0.05 0.05 0.04 0.05 0.05 .05 .05

Complete
sz 0.36 0.10 0.32 0.13 0.24 0.13 .24 .13
sv 0.50 0.31 0.28 0.09 0.90 0.38 .90 .38
st0 0.04 0.04 0.05 0.04 0.04 0.03 .04 .03

Note. Fixed: d=0 and z=a/2; Complete: No restrictions of d or z.
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Table 3. Model-fit indices of Study 1.  The table shows the Kolmogorov-Smirnov-Statistic 
(KS), which is the maximum vertical distance between predicted and empiric RT-
distributions. 

Parameter Set
1 2 3 4

Restrictions M SD M SD M SD M SD
Fixed .029 .005 .056a .008 .046a .007 .078a .007
d=0 .028 .004 .028 .004 .034a .005 .032a .005
z=0.5 .026 .004 .036a .006 .027 .004 .037a .007
Complete .027 .003 .027 .003 .029 .004 .030 .005
Note. Fixed: d=0 and z=a/2; Complete: No restrictions of d or z.
a Restrictions conflicted with the original values.
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Table 4.  Ranges for parameter values for the simulated data sets from Study 2. The decision 
bias parameter was set to z=0.5a, or z=0.65a, respectively. The response-execution bias 
parameter was set to d=0.05 or d=0.00 respectively.
Parameter Minimum Maximum

a 0.80 1.30

v1 1.00 4.00

v2 -4.00 -1.00

t0 0.20 0.40

sz 0.00 0.25a

sv 0.00 1.00

st0 0.00 0.10

Note. A diffusion constant of s = 1 was adopted. If other diffusion constants are of interest 
parameters a, z, v, sz, and sv can be transformed by multiplication with the new value of s.
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Figures

Figure 1. Ratcliff’s Diffusion Model.



A 

B 

Figure 2. Re-estimated parameter values from Study 2.  The top panel (A) depicts data from 
parameter set 1 (neither decision bias nor response-execution bias).  The bottom panel (B) 
shows data from parameter set 2 (decision bias only).  Original (correct) values are indicated 
by the slashed lines.  Error bars indicate +/- 1 SD.
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Figure 3. Re-estimated parameter values from Study 2.  The top panel (C) shows data from 
parameter set 3 (response-execution bias only).  The bottom panel (D) shows data from 
parameter set 4 (decision bias and response-execution bias).  Original (correct) values are 
indicated by the slashed lines.  Error bars indicate +/- 1 SD.
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Figure 4. Percentage of data sets for which the estimation procedure with “wrong” restriction 
(i.e., incompatible with the original parameter set) resulted in a better fit than the models with 
“correct” restrictions (Study 2).  The grey line represents data sets simulated from the 
response-execution bias model; the black line shows results from the decision-bias model.



Figure 5. Model Mimicry: Combined Cumulative Distribution Functions (cCdFs) for the 
response-bias model (left) and for the decision-bias model (right). Original cCdFs are 
demonstrated by the dotted lines. The solid black lines give the cCdFs from parameters 
estimated with incorrect restrictions, that is, response-bias data is mimicked with a decision-
bias model and vice versa.


	Abstract
	Separating Response-Execution Bias from Decision Bias: Arguments for an Additional Parameter in Ratcliff’s Diffusion Model
	The Diffusion Model and Predicted Response-Time Distributions
	The Rationale of the Diffusion Model
	Applications of the Diffusion Model

	Mapping Response Tendencies: A Second Response-Time Constant
	Simulation Study 1: Recovering Parameter Values
	Simulating data sets
	Re-estimating parameter values
	Parameter Set 1: No Bias
	Parameter Set 2: Decision Bias
	Parameter Set 3: Response-Execution Bias
	Parameter Set 4: Decision Bias and Response-Execution Bias

	Model Fit
	Discussion

	Simulation Study 2: Identifying Response-Execution Biases in Individual Data Sets.
	Simulating Data Sets and Re-Estimating Parameter Values
	Results
	Discussion

	Model Mimicry: Locating the Effect of Wrong Parameter Specifications in the RT Distributions
	General Discussion
	Potential Biases of Parameter Estimates from the Standard Model
	Potential Benefits of Additional Information from the Extended Model

	References
	Tables
	Figures

