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Introduction

The theory of large deviations is concerned with the study of the probabilities of very rare
events. In this text we present some results which can be obtained by applying large deviation
techniques to the study of diffusion processes.

The basic result in this area is Schilder’s theorem about large deviations of scaled down
Brownian motion. With this theorem one can calculate the exponential decay rates for prob-
abilities of the form P (

√
εB ∈ A) for ε ↓ 0 where B is a Brownian motion and A is a set

of paths. This result is generalised by the Freidlin-Wentzell theory to the case of stochastic
differential equations with small noise. The theory describes how solutions of a stochastic
differential equation like

dXt = b(X) � dt+
√
ε dB

on a fixed time interval [0; t] behave for small ε.
In the present text we place our main focus on the case of strong drift instead of small

noise, i.e. on solutions of the stochastic differential equation

dXϑ
t = ϑb(Xϑ) � dt+ dB

for large ϑ. Using a time change one can transform the case of strong drift into the case of
small noise, but unfortunately the resulting equation is defined on a time interval whose length
depends on the parameter ε, so the Freidlin-Wentzell theory cannot easily be applied to the
time-changed process.

We will derive a large deviation result for the behaviour of Xϑ
t for fixed t when ϑ becomes

large by using a different technique. The proof uses the fact that we know the density of the
distribution of Xϑ with respect to the Wiener measure on the path space from the Girsanov
formula. Assuming b = grad Φ this density is

ϕ = exp
(
ϑF − ϑ2G

)
with

F = Φ(0)− Φ(Bt) +
1
2

∫ t

0

∆Φ(Bs) ds

and

G =
1
2

∫ t

0

b2(Bs) ds.

For large ϑ the term ϑF can be neglected and we can use the approximation P (Xϑ
t ∈ A) ≈

E
(
exp(−ϑ2G)1A(Bt)

)
. The right hand side of this relation can be considered as a Laplace

transform of G, the large deviation behaviour of P (Xϑ
t ∈ A) for ϑ → ∞ can be expressed

in terms of the tail-behaviour of this Laplace transform. Using a Tauberian theorem we can
translate questions about this tail behaviour into questions about the behaviour of the distri-
bution of G near the origin.

Following this programme we have to estimate probabilities of the form P (G < ε) for
small ε. The random variable G is small when the Brownian motion spends most of the time
near an equilibrium point of the drift b. To estimate the probabilities for this event we have
to study two different aspects: Firstly, the process has to reach the equilibrium point very
quickly. This can be treated with the help of Schilder’s theorem. And secondly, once near the
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4 INTRODUCTION

equilibrium point the process has to stay close to this point most of the time. Here we can use
Taylor approximation of the drift to replace the process with an Ornstein-Uhlenbeck process,
which is much easier to work with.

The building blocks for this proof are developed during the first chapters. The final res-
ult about the large deviation behaviour of Xϑ

t for strong drift is presented as theorem 5.19
together with two corollaries.

The text is structured as follows. The first chapter gives a characterisation of diffusion
processes as solutions of stochastic differential equations. We will only consider equations of
the form

dXt = b(Xt) � dt+ σ(Xt) � dBt,

which lead to Markovian solutions. The chapter summarises some results about these pro-
cesses.

The second chapter gives a very short introduction into the theory of large deviations.
We present some tools from the literature, with special emphasis on techniques which will be
useful when applied to families of diffusion processes. Because diffusion processes are complex
objects, large deviation results can be applied on different levels. We give results about the
behaviour of stationary distributions when the drift becomes strong, about empirical distribu-
tions when the process is observed over long time intervals, and about the paths of the process
when the noise is small.

Chapter 3 is devoted to an example: the Ornstein-Uhlenbeck process is the solution of the
stochastic differential equation

dXt = −αXt � dt+ dBt

for some positive parameter α. Because of the simple structure of the process it is possible to
calculate may things explicitly here. We derive an large deviation result for the behaviour of
Xt for fixed t ∈ R when the parameter α becomes large. This is a simplified version of our
main result.

In chapter 4 we present a Tauberian theorem of exponential type as another tool to obtain
large deviation results. The theorem provides a connection between the behaviour of a prob-
ability distribution near the origin and the Laplace transform near infinity. Using the theorem
allows us to deduce results like

lim
ε↓0

ε · logP
(∫ t

0

B2
s ds ≤ ε

)
= − t2

8

where B is a Brownian motion. As an application we derive a large deviation theorem for
Brownian paths with small L2-norm. The last part of chapter 4 derives a result about upper
and lower limits in the Tauberian theorem.

The central part of this text is chapter 5. Here we combine many results from the previous
chapters to derive the large deviation result for the behaviour of the endpoint of a diffusion
under strong drift. It transpires that a typical path under strong drift and with given endpoint
runs towards an equilibrium point of the drift quickly, stays there until near the end of the
time interval, and only then moves quickly to the given endpoint. The initial and final pieces
of the path can be treated with Schilder’s theorem about pathwise large deviations for scaled
down Brownian motion. The middle piece of each path can be treated with the Tauberian
theorem from chapter 4. We give separate results for the case of attracting drift and for the
case of repelling drift.

Chapter 6 gives another application of large deviation results, namely to determine the
exponential decay rate for the Bayes risk when separating two different processes. Since the
Bayes risk is a measure of how close the probability distributions of the two processes are, this
rate describes how fast we can gain information about the processes by looking at the paths.

Finally chapter 7 describes some techniques which help to experiment with rare events
for diffusion processes by means of computer simulations. We describe the Euler-Maruyama
method to simulate solutions of stochastic differential equations. In subsequent sections of
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chapter 7 we describe how the importance sampling method can be used to estimate small
probabilities and how the rejection method can be used to sample from conditional distri-
butions where the condition has very low probability. Finally we describe how the Langevin
method can be used to sample paths of a diffusion with given end point.

The table at page 95 explains some symbols and some notation used throughout the text.
There is also an index which might help to access the text.

I wish to thank my supervisor Professor H. v. Weizsäcker for all his help and support in
writing this text and Martin Hairer for his advice.
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Chapter 1

DiffusionProcesses

This introductory chapter will summarise some results about diffusion processes, which we will
use later. My main reference here is the book of v. Weizsäcker and Winkler [WW90]. Other
useful references are the books of Karatzas and Shreve [KS91], of Ikeda and Watanabe [IW89],
and of Stroock and Varadhan [SV79].

There are many ways to characterise diffusion processes. In this thesis we will use the
characterisation of a diffusion␣process as the solution of the stochastic differential equation

dXt = b(Xt) � dt+ σ(Xt) � dBt (1.1)

for some initial value X0 ∈ L1, where B is an n-dimensional Brownian motion, b : Rd → Rd is
some drift␣function, and σ : Rd → Rd×n is the diffusion␣coefficient.

The basic results about existence and uniqueness of solutions for this equation (theorems
IV.2.4 and IV.3.1 from [IW89]) are as follows:

Theorem 1.1. Let b : Rd → Rd and σ : Rd → Rd×n be continuous, satisfy the growth
condition

‖σ(x)‖2 + ‖b(x)‖2 ≤ K
(
1 + |x|2

)
for all x ∈ Rd (1.2)

for some K > 0, and let E|X0|2 < ∞. Then the corresponding SDE has a solution with
E|Xt|2 <∞ for all t ≥ 0.

Theorem 1.2. Let b : Rd → Rd and σ : Rd → Rd×n satisfy the following local Lipschitz
condition: for every N ∈ N there is a KN > 0 with

‖σ(x)− σ(y)‖2 + ‖b(x)− b(y)‖2 ≤ KN |x− y|2 for every x, y ∈ KN (1.3)

where KN is the closed ball with radius N .Then the corresponding SDE has a unique strong
solution.

We will mostly consider the case where B is a d-dimensional Brownian motion and σ(x) =
Id for all x ∈ Rd. If then for example b is globally Lipschitz, i.e. there is a c > 0 with |b(x) −
b(y)| < c|x− y| for all x, y ∈ Rd, then we have

‖σ(x)‖2 + ‖b(x)‖2 ≤ 12 +
(
‖b(x)− b(0)‖+ ‖b(0)‖

)2
≤ 1 + 2c2|x− 0|2 + 2b2(0)

≤ max(1 + 2b2(0), 2c2)
(
1 + |x|2

)
and

‖σ(x)− σ(y)‖2 + ‖b(x)− b(y)‖2 ≤ 0 + |x− y|2

for all x, y ∈ Rd, i.e. equations 1.2 and 1.3 hold and the theorems guarantee the existence of a
unique solution in this case.
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8 CHAPTER 1. DIFFUSION PROCESSES

Sometimes it is useful to rescale diffusion processes. This helps us for example, to transport
diffusions on time intervals [0; t] for different values of t to a common sample space. This can
be done with the following lemma.

Lemma 1.3. Let c > 0 and X be a solution of the SDE

dX = b(X) � dt+ σ dB.

Define the rescaled process Y by Yt = Xct/
√
c for every t ≥ 0, a new Brownian motion B̃

by B̃t = Bct/
√
c for all t ≥ 0 and a new drift field by b̃(x) =

√
c · b(

√
c · x) for all x ∈ Rd.

Then the process Y solves the SDE

dY = b̃(Yt) � dt+ σ dB̃.

Proof. By the basic scaling property of Brownian motion the process B̃ as defined above
is a Brownian motion. For any pair of stopping times S and T with S < T the following holds.

YT − YS =
1√
c

(
XcT −XcS

)
=

1√
c

(∫ cT

cS

b(Xt) dt+ σBcT − σBcS
)

c · s = t=
1√
c

∫ T

S

b(Xcs) c ds+ σ
1√
c
BcT − σ

1√
c
BcS

=
∫ T

S

√
cb(
√
cYs) ds+ σ(B̃T − B̃S).

This proves the claim. (qed)

The basic characterisation of reversible diffusions is the following theorem, which goes back
to a result of Kolmogorov. A detailed proof is given for example in [Voß97].

Theorem 1.4. Let b : Rd → R
d be Lipschitz continuous, B a Brownian motion with

values in Rd, and X a solution of the SDE

dX = b(X) � dt+ dB

with X0 ∈ L2. Then the following conditions are equivalent:
(j) The process X is reversible with stationary distribution µ.
(ij) There is a function Φ: Rd → R with b = −∇Φ and dµ = exp(−2Φ(x)) dx.∫

Rd

exp
(
−2Φ(x)

)
dx = 1.

Of course the condition b = − grad Φ determines the potential Φ only up to a constant.
So whenever exp(−2Φ) is integrable, one can add a normalising constant to Φ, to change
exp(−2Φ) into a probability density.

The case of diffusion processes where the drift is a gradient is especially easy, because we
can explicitly calculate the density of the distribution of the processes with respect to the
Wiener measure. The big advantage of formula (1.4) below is, that it does not contain the
stochastic integral from the Girsanov formula any more.

Lemma 1.5. Let B be a (Ft)-Brownian motion and let X be a solution of the stochastic
differential equation

dXt = b(Xt) � dt+ dBt

X0 = 0.
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Furthermore let Φ: Rd → R be two times continuously differentiable with b = − grad Φ and
let b be Lipschitz continuous. Then the distribution of X on Ft has a density ϕt with respect
to the Wiener measure, defined by

ϕt(ω) = exp
(
−Φ(ωt) + Φ(ω0)−

∫ t

0

v(ωs) ds
)

for all ω ∈ C
(
[0;∞),Rd

)
(1.4)

where v = 1
2

(
(∇Φ)2 −∆Φ

)
, i. e. for every A ∈ Ft we have

P (X ∈ A) =
∫
A

ϕ(ω) dW(ω).

Proof. The density of L(X) on Ft is characterised by the Girsanov formula (see e.g.
section 10.2 of [WW90]). The Lipschitz-continuity of b gives the necessary integrability condi-
tions (see, e.g. corollaries 1.1 and 1.2 of [Voß97]). So we only have to check that ϕt as defined
in (1.4) satisfies

ϕt(X) = exp
(∫ t

0

b(Xs) dXs −
1
2

∫ t

0

b2(Xs) ds
)
.

Itô’s formula gives

dΦ(X) = grad Φ(X) � dX +
1
2

∆Φ(X) � dt

= −b(X) � dX +
1
2

∆Φ(X) � dt

and because of

b(X) � dX − 1
2
b2(X) � dt = −dΦ(X)− 1

2
(
(∇Φ(X))2 −∆Φ(X)

)
� dt

= −dΦ(X)− v(X) � dt

we get

ϕt(X) = exp
(
−Φ(Xt) + Φ(X0)−

∫ t

0

v(Xs) ds
)

= exp
(∫ t

0

b(Xs) dXs −
1
2

∫ t

0

b2(Xs) ds
)
.

So everything is proved. (qed)

Example 1.1. Constant drift. Here we have some vector b ∈ Rd with b(x) = b for all
x ∈ Rd. With the notation from lemma 1.5 we get

Φ(x) = −b · x
b(x) = − grad Φ(x) = b

v(x) =
1
2
(
(∇Φ)2 −∆Φ

)
(x) =

b2

2

and conclude

ϕt(ω) = exp
(
−Φ(ωt) + Φ(ω0)−

∫ t

0

v(ωs) ds
)

= exp
(
b · (ωt − ω0)− b2

2
t
)
.

This case is especially easy, because v is constant and thus the density is a function of only the
endpoint of the path.
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Example 1.2. The Ornstein-Uhlenbeck process. Here we have b(x) = −αx for some
α > 0. Using the notation of lemma 1.5 again, we get

Φ(x) =
α

2
x2 − d

4
log

α

π
b(x) = − grad Φ(x) = −αx

v(x) =
1
2
(
(∇Φ)2 −∆Φ

)
(x) =

1
2

(α2x2 − αd).

The strange constant in the definition of Φ makes exp(−2Φ) a probability density, namely the
density of a normal distribution with covariance matrix 1/2α · I. The process corresponding to
this drift is reversible and has a stationary distribution µ. The lemma gives the density

ϕt(ω) = exp
(
−α

2
(ω2
t − ω2

0 − t · d)− α2

2

∫ t

0

ω2
s ds

)
.



Chapter 2

LargeDeviations

In this chapter I want to review some tools, which are available to study large deviations of
diffusion processes. My main source here is the book of Dembo and Zeitouni [DZ98]. Other
useful references include the books of Deuschel and Stroock [DS89] and den Hollander [Hol00].

2.1 Introduction

This section formulates the basic large deviation principle and gives the basic definition. For
details see the references given above.

Definition 2.1. A rate function is a function I : X → [0;∞] on a Hausdorff topological
space X , which is lower semi-continuous, i.e. where all the level sets {x ∈ X | I(x) ≤ c } for
c ≥ 0 are closed in X . A rate function I : X → [0;∞] is called a good rate function, if all the
level sets {x ∈ X | I(x) ≤ c } for c ≥ 0 are compact in X .

In this text the space X will typically be either the Euclidean space Rn or a path space
like C

(
[0;∞),Rd

)
.

Definition 2.2. A family (µε)ε>0 of probability measures on a Hausdorff topological
space X is satisfies the large deviation principle (or shorter, the LDP) with rate␣function I : X →
[0;∞], if the following two estimates hold:

lim sup
ε↓0

ε logµε(A) ≤ − inf
x∈A

I(x) (2.1)

for every closed set A ⊆ X and

lim inf
ε↓0

ε logµε(O) ≥ − inf
x∈O

I(x) (2.2)

for every open set O ⊆ X .

Sometimes it is difficult to obtain a full LDP as described in the definition, but is is pos-
sible to get a weak LDP.

Definition 2.3. If the upper bound in definition 2.2 only holds for all compact (instead
of all closed) sets, then the family (µε)ε>0 satisfies the weak large deviation principle (or
short: the weak LDP).

A weak LDP can be strengthened to a full LDP with the help of the following Lemma,
which is a direct consequence of lemma 1.2.18 in [DZ98].

11



12 CHAPTER 2. LARGE DEVIATIONS

Definition 2.4. A family (µε)ε>0 of probability measures on a Hausdorff topological
space X is exponentially tight if for every α > 0 there exists a compact set K ⊆ X with

lim sup
ε↓0

ε logµε(X \K) < −α.

Lemma 2.1. Let (µε)ε>0 be an exponentially tight family of probability measures. If the
upper bound (2.1) holds for all compact sets, then it also holds for all closed sets.

2.2 General Principles

There are many tools, which are useful in the area of large deviations, and which can be
formulated without considering a specific problem. Most of the results here help to use a
exponential rate which is already known, by carrying it over to a different situation.

The following, frequently used Lemma shows that the exponential rate of a sum is just the
maximum of the individual rates.

Lemma 2.2. For any family of finitely many functions f1, . . . , fn : R+→ R+ we have

lim inf
ε↓0

ε log
( n∑
k=1

fk(ε)
)
≥ max
k=1,...,n

(
lim inf
ε↓0

ε log fk(ε)
)

and

lim sup
ε↓0

ε log
( n∑
k=1

fk(ε)
)

= max
k=1,...,n

(
lim sup
ε↓0

ε log fk(ε)
)
.

Note the asymmetry between the ≥ and the = sign. It is easy to construct examples, where
a strict inequality holds for the first case. The next lemma illustrates two special case, where
we have equality for both bounds.

Lemma 2.3. Let f, g : R+ → R+ be two functions and assume that either one of
the two conditions lim supε↓0 ε log g(ε) ≤ lim infε↓0 ε log f(ε) or lim supε↓0 ε log g(ε) <

lim infε↓0 ε log
(
f(ε) + g(ε)

)
holds. Then we have

lim inf
ε↓0

ε log
(
f(ε) + g(ε)

)
= lim inf

ε↓0
ε log f(ε)

and

lim sup
ε↓0

ε log
(
f(ε) + g(ε)

)
= lim sup

ε↓0
ε log f(ε).

Proof (a). First assume lim supε↓0 ε log g(ε) ≤ lim infε↓0 ε log f(ε). From lemma 2.2 we
know lim infε↓0 ε log

(
f(ε) + g(ε)

)
≥ lim infε↓0 ε log f(ε). On the other hand for every c >

lim infε↓0 ε log f(ε) and every E > 0 we find an ε < E with f(ε) < exp(c/ε) and, by choosing ε
sufficiently small, also with g(ε) < exp(c/ε). So we can conclude

lim inf
ε↓0

ε log
(
f(ε) + g(ε)

)
≤ lim inf

ε↓0
ε log

(
2 exp(c/ε)

)
= c

for all c > lim infε↓0 ε log f(ε). This proves the first claim. The second claim is a direct con-
sequence of lemma 2.2.

(b) Now assume lim supε↓0 ε log g(ε) < lim infε↓0 ε log
(
f(ε) + g(ε)

)
and choose a c ∈ R with

lim sup
ε↓0

ε log g(ε) < c < lim inf
ε↓0

ε log
(
f(ε) + g(ε)

)
.
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Then there exists an E > 0 such that for every ε < E we have both f(ε) + g(ε) > 2 exp(c/ε)
and g(ε) < exp(c/ε). Consequently we find f(ε) > exp(c/ε) for all ε < E and thus the
lower limit satisfies lim infε↓0 ε log f(ε) ≥ c for all c < lim infε↓0 ε log

(
f(ε) + g(ε)

)
. This

proves lim infε↓0 ε log
(
f(ε) + g(ε)

)
≤ lim infε↓0 ε log f(ε) and again with the first estimate from

lemma 2.2 we get the equality for the lower bounds.
From the second part of lemma 2.2 we know that the rate for the sum is the maximum of

the individual rate. Because of

lim sup
ε↓0

ε log g(ε) < lim inf
ε↓0

ε log
(
f(ε) + g(ε)

)
≤ lim sup

ε↓0
ε log

(
f(ε) + g(ε)

)
the maximum must then be attained for lim supε↓0 ε log f(ε). This completes the proof.

(qed)

For future reference we state the following basic estimate.

Lemma 2.4. Let c1, . . . , cn ∈ R. Then

c21
α1

+ · · ·+ c2n
αn
≥ (c1 + · · ·+ cn)2∑n

k=1 αk

for all α1, . . . , αn > 0 and equality holds if and only if there is a λ ∈ R with λαk = ck for
k = 1, . . . , n.

Proof. Let a =
∑n
k=1 αk, pk = αk/a, and dk = ck/pk for k = 1, . . . , n. Then

∑n
k=1 pk = 1

and Jensen’s inequality gives
n∑
k=1

ck
pk

=
n∑
k=1

pkd
2
k ≥

( n∑
k=1

pkdk

)2

=
( n∑
k=1

ck

)2

(2.3)

where equality holds only for d1 = · · · = dn. Dividing (2.3) by a proves the claim. (qed)

A result somewhat similar to lemma 2.2 is the following. It gives an upper bound for the
exponential rate of a product.

Lemma 2.5. Let f1, . . . , fn : R+→ R+ and lim supε↓0 ε log fk(ε) = −c2k for k = 1, . . . , n.
Let α1, . . . , αk > 0. Then the following estimate holds:

lim sup
ε↓0

ε log
n∏
k=1

fk(αkε) ≤ −
(∑n

k=1 ck
)2∑n

k=1 αk
.

Proof. Taking the product out of the logarithm we find

lim sup
ε↓0

ε log
n∏
k=1

fk(αkε) ≤
n∑
k=1

lim sup
ε↓0

ε log fk(αkε)

=
n∑
k=1

1
αk

lim sup
ε↓0

ε log fk(ε)

= −
n∑
k=1

1
αk
c2k.

Applying the estimate from lemma 2.4 proves the claim. (qed)

The following lemma will turn out to be very useful for proving upper large deviation
bounds. It helps to split an upper bound into a finite number of cases, which in turn helps to
apply lemma 2.2. This trick is illustrated by the proof of proposition 2.7 below.
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Lemma 2.6. For each δ > 0 there is a finite set Dδ
n ⊆

{
α ∈ Rn≥0

∣∣ α1 + · · ·+ αn = 1 + δ
}

with {
(ε1, . . . , εn) ∈ Rn≥0

∣∣ ε1 + · · ·+ εn ≤ ε
}

⊆
⋃

α∈Dδn

{
(ε1, . . . , εn) ∈ Rn≥0

∣∣ εj ≤ αjε for j = 1, . . . , n
}

for all ε > 0.

Proof. Let δ > 0. Because the simplex is compact, the covering{
(x1, . . . , xn) ∈ Rn≥0

∣∣ x1 + · · ·+ xn ≤ 1
}

⊆
⋃

α∈Rn≥0
‖α‖1=1+δ

{
(x1, . . . , xn) ∈ Rn≥0

∣∣ xj < αj for j = 1, . . . , n
}

can be reduced to a finite one. So we can choose a finite set Dδ
n such that the inclusion still

holds when the union is only taken over α ∈ Dδ
n. Multiplying both sides with ε > 0 gives the

claim. (qed)

Lemma 2.5 is useful, if one can exploit some kind of independence structure. The following
proposition features a basic application which shows the machinery at work. In chapter 5 we
will use this idea in a more complicated situation.

Proposition 2.7. Let X1, . . . , Xn be independent, positive random variables with

lim sup
ε↓0

ε logP
(
Xk ≤ ε

)
= −c2k

and
lim inf
ε↓0

ε logP
(
Xk ≤ ε

)
= −b2k

where bk, ck ≥ 0 for k = 1, . . . , n. Then we have

lim sup
ε↓0

ε logP
(
X1 + · · ·+Xn ≤ ε

)
≤ −(c1 + · · ·+ cn)2.

and
lim inf
ε↓0

ε logP
(
X1 + · · ·+Xn ≤ ε

)
≥ −(b1 + · · ·+ bn)2.

Proof. Let δ > 0 and Dδ
n as in lemma 2.6. This gives

P
(
X1 + · · ·+Xn ≤ ε

)
≤
∑
α∈Dδn

P
(
X1 ≤ α1ε, . . . ,Xk ≤ αkε

)
.

For the individual terms we can use lemma 2.5. Let lim supε↓0 ε logP
(
Xk ≤ ε

)
= −c2k with

ck ≥ 0. Then we get

lim sup
ε↓0

ε logP
(
X1 ≤ α1ε, . . . ,Xk ≤ αkε

)
= lim sup

ε↓0
ε log

n∏
k=1

P
(
Xk ≤ αkε

)
≤ − (c1 + · · ·+ cn)2

1 + δ
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for every α ∈ Dδ
n. Using lemma 2.2 we conclude

lim sup
ε↓0

ε logP
(
X1 + · · ·+Xn ≤ ε

)
≤ max
α∈Dδn

lim sup
ε↓0

ε logP
(
X1 ≤ α1ε, . . . ,Xk ≤ αkε

)
≤ − (c1 + · · ·+ cn)2

1 + δ

for every δ > 0 and thus

lim sup
ε↓0

ε logP
(
X1 + · · ·+Xn ≤ ε

)
≤ −(c1 + · · ·+ cn)2.

For the lower bound let lim infε↓0 ε logP
(
Xk ≤ ε

)
= −b2k with bk ≥ 0. From lemma 2.4 we

know that we should choose αk proportional to bk in order to get best possible bound:

lim inf
ε↓0

ε logP
(
X1 + · · ·+Xn ≤ ε

)
≥ lim inf

ε↓0
ε logP

(
Xk ≤

bk
b1 + · · ·+ bn

ε, k = 1, . . . , n
)

= lim inf
ε↓0

ε log
n∏
k=1

P
(
Xk ≤

bk
b1 + · · ·+ bn

ε
)

≥
n∑
k=1

b1 + · · ·+ bn
bk

lim inf
ε↓0

ε logP
(
Xk ≤ ε

)
= −

n∑
k=1

b1 + · · ·+ bn
bk

b2k

= −(b1 + · · ·+ bn)2.

This completes the proof. (qed)

The remaining part of this section summarises some important results from the literature.
The contraction principle allows, to transform an LDP on one space to another space by
means of a continuous mapping. The following theorem (theorem 4.2.1 in [DZ98]) states the
result.

Theorem 2.8 (contraction principle). Let X and Y be Hausdorff topological spaces and
f : X → Y be a continuous function. Consider a good rate function I : X → [0;∞].

(a) For each y ∈ Y define

I ′(y) = inf
{
I(x)

∣∣ x ∈ X , f(x) = y
}
.

Then I ′ is a good rate function on Y.
(b) If I controls the LDP associated with a family of probability measures (µε) on X , then

I ′ controls the LDP associated with the family of probability measures (µε ◦ f−1) on Y.

If f is not injective then the mapping “looses information”. Thus the contraction principle
can transport an LDP from a larger space to a smaller one. The Dawson-Gärtner theorem
does the opposite. It helps to transport an LDP from smaller spaces to a large space.

In order to formulate the theorem we need the concept of an projective limit. Let (J,≤) be
a partially ordered set, such that whenever i, j ∈ J there exists a k ∈ J with i ≤ k and j ≤ k.

A projective system is a family (Yj)j∈J of Hausdorff topological spaces, together with a
family (pij)i,j∈J of continuous maps pij : Yj → Yi, such that pik = pij ◦ pjk whenever i, j, k ∈ Y
with i ≤ j ≤ k.
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The projective limit of the system (Yj , pij)i,j∈J is the subset X of all elements from the
product space Y =

∏
j∈J Yj , which are consistent with the maps pi,j , i.e. a y = (yj)j∈J ∈ Y

is in X , if and only if yi = pij(yj) whenever i < j. The canonical projections pj : X → Yj
are defined by pj(y) = yj . The space X is equipped with the topology induced by Y. The
canonical projections are continuous because they are just the restriction of the continuous
coordinate maps Y → Yj to the space X .

The typical example here is J being the set of all finite subsets of an interval [0; t] ⊆ R,
with the set inclusion as the partial ordering. The projective system is then the family of all
finite dimensional spaces Rj for finite sets j ⊆ [0; t], i.e. for j ∈ J . In this case the projective
limit X is the space of all functions [0; t] → R, equipped with the topology of pointwise
convergence.

The following theorem (theorem 4.6.1 in [DZ98]) explains how to transport an LDP from
the spaces Yj to the projective limit X .

Theorem 2.9. (Dawson-Gärtner) Let (µε)ε>0 be a family of probability measures on X .
Assume that for each j ∈ J the probability measures (µε ◦ p−1

j )ε>0 on Yj satisfy the LDP
with good rate function Ij. Then the family (µε) satisfies the LDP on X with a good rate
function I, defined by

I(x) = sup
{
Ij(pj(x))

∣∣ j ∈ J} for all x ∈ X .

Another important tool is the Varadhan Lemma (Theorem 4.3.1 in [DZ98]). Let Zε be
random variables, taking values in the regular topological space X , and let µε be the law
of Zε.

Theorem 2.10. (Varadhan␣Lemma) Suppose that (µε) satisfies the LDP with a good
rate function I : X → [0;∞], and let ϕ : X → R be any continuous function. Assume further
either the tail condition

lim
M→∞

lim sup
ε↓0

ε logE
(

exp(ϕ(Zε)/ε)(ϕ(Zε) ≥M)
)

= −∞,

or the following moment condition for some γ > 1,

lim sup
ε↓0

ε logE
(

exp(γϕ(Zε)/ε)
)
<∞.

Then
lim
ε↓0

ε logE
(

exp(ϕ(Zε)/ε)
)

= sup
x∈X

(
ϕ(x)− I(x)

)
.

2.3 The LDP for Stationary Distributions

In this section we will prove a simple large deviation principle which describes the asymptotic
behaviour of the stationary distribution of a diffusion process when the drift becomes stronger.

The proof will be a simple application of the Laplace-Principle, which is formulated in the
following lemma. This is similar to the Varadhan lemma (theorem 2.10). We give an independ-
ent proof here, because the proof is simple and nevertheless gives some insight.

Lemma 2.11. (Laplace␣principle) Let A ⊆ Rd be measurable and ϕ : Rd → R be a
measurable function with

∫
A

e−ϕ(x) dx <∞. Then we have

lim
ϑ→∞

1
ϑ

log
∫
A

e−ϑϕ(x) dx = − ess inf
x∈A

ϕ(x).
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Proof. Denote the Lebesgue measure by λd. First choose c > ess infx∈A ϕ(x). Then we
have λd{x ∈ A | ϕ(x) < c } > 0 and thus

lim inf
ϑ→∞

1
ϑ

log
∫
A

e−ϑϕ(x) dx ≥ lim inf
ϑ→∞

1
ϑ

log
(
e−ϑcλd{x ∈ A | ϕ(x) < c }

)
= −c.

This holds for all c > ess infx∈A ϕ(x), which gives

lim inf
ϑ→∞

1
ϑ

log
∫
A

e−ϑϕ(x) dx ≥ − ess inf
x∈A

ϕ(x).

For ess infx∈A ϕ(x) = −∞ everything is clear. Assume ess infx∈A ϕ(x) > −∞. Then by
adding a constant to ϕ we can assume ess infx∈A ϕ(x) = 0 without loss of generality. Because
e−ϑϕ(x) for ϑ→∞ converges a.s. monotonically from above to the indicator function of the set
{x ∈ A | ϕ(x) = 0 } and is bounded by the integrable function e−ϕ(x) we have

lim
ϑ→∞

∫
A

e−ϑϕ(x) dx = λd{x ∈ A | ϕ(x) = 0 } ≤ λd{x ∈ A | ϕ(x) ≤ 0 } < ∞

and thus we get the upper bound

lim sup
ϑ→∞

1
ϑ

log
∫
A

e−ϑϕ(x) dx ≤ 0 = − ess inf
x∈A

ϕ(x).

(qed)

As an almost trivial conclusion of the Laplace principle we can derive a large deviation
principle for standard normal distributed random variables in R. This is illustrated in the
following corollary.

Corollary 2.12. If X is a standard normal random variable, then

lim
ε↓0

ε logP (
√
εX ∈ A) = − ess inf

x∈A

x2

2

for every measurable set A ⊆ R.

Proof. The distribution of
√
εX has density

ψ0,ε(x) =
1√
2πε

exp
(
−x

2

2ε
)
.

Thus with ϑ = 1/ε the Laplace principle gives

lim
ε↓0

ε logP (
√
εX ∈ A) = lim

ε↓0
ε log

∫
A

exp
(
−x

2

2ε
)
dx− lim

ε↓0
ε log

√
2πε

= − ess inf
x∈A

x2

2
+ 0.

(qed)

Example 2.1. Let B be a one-dimensional Brownian motion. Then Bt is Gaussian dis-
tributed with expectation 0 and variance t. Using the corollary we can examine the large
deviation behaviour of the event {|Bt| > c} for c→∞. With ε = 1/c2 we have

|Bt| > c ⇐⇒
√
ε ·Bt/

√
t ∈
{
x ∈ R

∣∣ |x| > 1/
√
t
}

and thus
lim
c→∞

1
c2

logP
(
|B1| > c

)
= − 1

2t
.



18 CHAPTER 2. LARGE DEVIATIONS

For comparison with example 2.2 below we also note that the probability of |Bt| < ε for
ε ↓ 0 decays slower the exponentially. We have

lim
ε↓0

ε2 logP
(
|B1| < ε

)
= lim

ε↓0
ε2 log

∫ ε

−ε

1√
2π

e−x
2/2 dx

= lim
ε↓0

ε2 log
(
2ε

1√
2π

)
= 0.

The main result of this section is as follows.

Theorem 2.13. Let Φ: Rd → R be differentiable and such that exp(−2Φ(x)) is a
probability density on Rd. Let Φ be bounded from below with Φ∗ = inf{Φ(x) | x ∈ Rd } >
−∞. Finally let b = − grad Φ be Lipschitz continuous.

Then for every ϑ ≥ 1 the stochastic differential equation

dXϑ = ϑ b(Xϑ) � dt+ dW

has a stationary distribution µϑ and for every measurable set A ⊆ Rd we have

lim
ϑ→∞

1
ϑ

logµϑ(A) = − ess inf
x∈A

2
(
Φ(x)− Φ∗

)
.

Proof. Again, let λd denote the Lebesgue measure on Rd and define

Zϑ =
∫
Rd

exp
(
−2ϑΦ(x)

)
dx.

Then we have

Zϑ =
∫
{Φ>0}

exp
(
−2ϑΦ(x)

)
dx+

∫
{Φ≤0}

exp
(
−2ϑΦ(x)

)
dx

≤
∫
{Φ>0}

exp
(
−2Φ(x)

)
dx+ λd{Φ ≤ 0} · exp(−2ϑΦ∗)

<∞.

Using Zϑ we can define Φϑ = ϑ · Φ + ln
√
Zϑ. This new potential has∫

exp(−2Φϑ) dx =
∫

exp(−2ϑΦ) exp(− lnZϑ) dx = 1

and
− grad Φϑ = −ϑ grad Φ = ϑ · b.

By Kolmogorov’s theorem (theorem 1.4) the process Xϑ is reversible and has a stationary
distribution µϑ with density exp(−2ϑΦ)/Zϑ.

Using this density we get

lim
ϑ→∞

1
ϑ

logµϑ(A) = lim
ϑ→∞

1
ϑ

log
∫
A

exp(−2ϑΦ(x))
1
Zϑ

dx

= lim
ϑ→∞

1
ϑ

log
∫
A

exp
(
−2ϑΦ(x)

)
dx− lim

ϑ→∞

1
ϑ

logZϑ

= − ess inf
x∈A

2Φ(x) + ess inf
x∈Rd

2Φ(x),

where the last line is a consequence of lemma 2.11. Filling in the definition of Φ∗ finishes the
proof. (qed)
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Both, the lemma and the theorem have results of the form

lim
ϑ→∞

1
ϑ

logµϑ(A) = − ess inf
x∈A

I(x) (2.4)

for all measurable sets A ⊆ Rd and for some function I. Assume that a family of measures
has the property (2.4). Then we can use infx∈A I(x) ≤ ess infx∈A I(x) to get the usual upper
bound from the large deviation principle: for closed sets A ⊆ Rd we have

lim sup
ϑ→∞

1
ϑ

logµϑ(A) = − ess inf
x∈A

I(x) ≤ − inf
x∈A

I(x).

On the other hand we don’t get the lower bound in the general case. Only in case that we
have infx∈O I(x) = ess infx∈O I(x) for every open set O ⊆ Rd, e.g. if I is continuous, we can
conclude the lower bound

lim inf
ϑ→∞

1
ϑ

logµϑ(O) ≥ − inf
x∈O

I(x)

for every open set O (actually in this case we have even equality here). So at least for continu-
ous rate functions I the condition (2.4) implies the LDP with rate function I.

The is not true in general. If we have an LDP in the form of definition 2.2, then the limit

lim
ϑ→∞

1
ϑ

logµϑ(A)

does not necessarily exist. A set A where we have

inf
x∈A◦

I(x) = inf
x∈A

I(x),

i.e. where the limit does exist, is called a continuity set of the rate function.

2.4 The LDP for Empirical Distributions

The empirical distribution of a reversible diffusion converges to the stationary distribution
when t→∞. In this section we will give a large deviation result for this case.

The empirical distribution Lωt ∈ Prob(Rd) of a process X with values in Rd is defined
by

Lωt (A) =
1
t
λd
{
s ∈ [0, t]

∣∣ ωs ∈ A} for all ω ∈ C
(
[0;∞),Rd

)
, A ∈ B(Rd),

where λd denotes the d-dimensional Lebesgue measure. Since Lt is a mapping from the path
space C

(
[0;∞),Rd

)
into Prob(Rd) we can understand Lt as a random probability measure

with corresponding probability space C
(
[0;∞),Rd

)
.

Let X be a reversible diffusion process with stationary distribution µ. In this situation the-
orem 6.2.21 of Deuschel and Stroock [DS89] applies. The notation there is a little bit different
from ours: their V is our 2v and U there corresponds to 2Φ here. The theorem expresses the
rate with the help of the Dirichlet form E (cf. below), which is associated with the process X:
define JE : Prob(Rd)→ [0;∞] by

JE(ν) :=

{
E(f, f), if ν � µ with dν = f2dµ for a f ∈ D(E), and
+∞ else.

Theorem 2.14. Let Pν be the distribution of a reversible solution of the stochastic
differential equation

dXt = b(Xt) � dt+ dBt (2.5)

with initial distribution L(X0) = ν and stationary distribution µ. Define v = (b2 + div b)/2
and assume that {x ∈ Rd | v(x) ≤ c } is compact for each c ≥ 0. Consider Prob(Rd) equipped
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with the weak topology and the Borel-σ-algebra. Then JE is a good rate function and the
following LDP holds:

− inf
Γ◦
JE ≤ inf

ν∈Prob(Rd)
lim inf
t→∞

1
t

logPν
(
{ω | Lωt ∈ Γ }

)
≤ sup
ν∈Prob(Rd)

lim sup
t→∞

1
t

logPν
(
{ω | Lωt ∈ Γ }

)
≤ − inf

Γ
JE

for all measurable sets Γ ⊆ Prob(Rd).

The Dirichlet-form E for the process X can be constructed as follows. Via

Ptf(x) = Ex
(
f(Xt)

)
for all x ∈ Rd and all t ≥ 0 we get a strongly continuous operator semigroup (Pt)t≥0 on the
space L2(Rd,B(Rd), µ). The generator L of this semigroup satisfies

Lf = b · ∇f +
1
2

∆f

for all f ∈ C2
c (Rd). Because X is reversible, the generator L is self-adjoint. Now define a

quadratic form E0 by

E0(f, g) :=
1
2

∫
Rd

∇f · ∇g dµ

for all f, g ∈ C∞c (Rd,R).

Lemma 2.15. Let X be a reversible solution of the SDE (2.5) with Lipschitz-continuous
drift b : Rd → Rd and stationary distribution µ. Then the quadratic form E0 satisfies

E0(f, g) = (−Lf, g)µ

for all f, g ∈ C∞c (Rd), where ( · , · )µ is the scalar product on L2(Rd,B(Rd), µ).

According to theorem X.23 of Reed and Simon [RS72] resp. theorem 6.2.9 of Deuschel
and Stroock, the quadratic form E0 has a closure

(
E ,D(E)

)
. We have f ∈ D(E) if and only if

there are fn ∈ C∞c (Rd) and g1, . . . , gd ∈ L2(Rd,B(Rd), µ) with fn → f and ∂jfn → gj in
L2(Rd,B(Rd), µ) for n→∞ and j = 1, . . . , d. In this case we get

E(f, f) = lim
n→∞

E0(fn, fn) =
1
2

∫
Rd

d∑
j=1

g2
j dµ.

2.5 Sample Path LDP

While the previous sections treated the large deviation behaviour of some derived properties of
a process, it is also possible to consider the large deviation behaviour of the process itself, i.e.
for the distribution of the processes paths on the space of all sample paths.

The basic large deviation result here is Schilder’s theorem about large deviations for scaled
down Brownian motion (see theorem 5.2.1 in [DZ98]). By C0([0; t],Rd) we denote the space of
all continuous functions ω : [0; t]→ Rd starting in 0, equipped with the supremum norm.

Theorem 2.16 (Schilder). Let B be a standard Brownian motion. For ε > 0 let
Wε be the law of the scaled down process

√
εB. Then the measures Wε satisfy on(

C0([0; t],Rd), ‖ · ‖∞
)
an LDP with good rate function

I(ω) =

{
1
2

∫ t
0
|ω̇s|2 ds, if ω is absolutely continuous, and

+∞ else.



2.5. SAMPLE PATH LDP 21

Example 2.2. Consider a one-dimensional Brownian motion on the time interval [0; t].
We can use Schilder’s theorem to calculate the exponential decay rates of the probability
P
(
‖B‖∞ > c

)
for c→∞.

With ε = 1/c2 we have

sup
0≤s≤t

|Bs| > c ⇐⇒
√
εB ∈

{
ω
∣∣ |ωs| > 1 for some s ∈ [0; t]

}
=: A

and because A is a continuity set of the rate function I we find

lim
c→∞

1
c2

logP
(
‖B‖∞ > c

)
= lim

ε↓0
ε logP

(√
εB ∈ A

)
= − inf

{1
2

∫ t

0

ω̇2
s ds

∣∣∣ ω ∈ A} = −1
2

∫ t

0

1/t2 dt = − 1
2t
,

where we used the fact that the infimum is attained for ωs = s/t. Comparing this with ex-
ample 2.1 we notice that the exponential rate for sup0≤s≤t |Bs| > c is the same as the expo-
nential rate for the event |Bt| > c.

On the other hand it is not possible to treat P
(
‖B‖∞ < ε

)
for ε ↓ 0 the same way. Since

we have
sup

0≤s≤t
|Bs| < ε ⇐⇒ 1

ε
B ∈

{
ω
∣∣ sup

0≤s≤t
|ωs| < 1

}
here, we would need the large deviation behaviour for the blown-up Brownian motion instead
of for the the scaled-down Brownian motion. We can derive the large deviation behaviour of
this special event nevertheless, because an explicit formula for the probability is known. In
section X.5 (p. 342) of [Fel71] it is shown that

P
(
|Bs| ≤ ε for all s ∈ [0; t]

)
=

4
π

∞∑
n=0

1
2n+ 1

exp
(
− (2n+ 1)2π2

8ε2
t
)

sin
( (2n+ 1)π

2

)
.

The dominating term in this sum is

4
π

1
2 · 0 + 1

exp
(
− (2 · 0 + 1)2π2

8ε2
t
)

sin
( (2 · 0 + 1)π

2

)
=

4
π

exp
(
− π2

8ε2
t
)

which corresponds to n = 0. For the tail of the sum we find the estimate
∞∑
n=1

1
2n+ 1

exp
(
− (2n+ 1)2π2

8ε2
t
)

sin
( (2n+ 1)π

2

)
≤
∞∑
n=1

exp
(
− (2n+ 1)2π2

8ε2
t
)

≤
∞∑
n=1

exp
(
−π

2t

2ε2
n
)

=
exp
(
−π

2t
2ε2

)
1− exp

(
−π2t

2ε2

)
and thus

lim sup
ε↓0

ε2 log
4
π

∞∑
n=1

1
2n+ 1

exp
(
− (2n+ 1)2π2

8ε2
t
)

sin
( (2n+ 1)π

2

)
≤ −π

2t

2
< −π

2t

8
.

Using lemma 2.3 we get

lim
ε↓0

ε2 logP
(
‖B‖∞ < ε

)
= lim

ε↓0
ε2 log

4
π

exp
(
− π2

8ε2
t
)

= −π
2t

8
.

The result is different than in example 2.1. The probability of sup0≤s≤t |Bs| < ε decays expo-
nentially for ε ↓ 0 while the probability for |Bt| < ε does not.
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A generalisation of theorem 2.16 is the so-called Freidlin-Wentzell␣Theory (see chapter 5.6
of [DZ98] for a detailed explanation). There, one considers a stochastic differential equation of
the form

dXε
t = b(Xε

t ) � dt+
√
ε dWt for t ∈ [0; 1], and

Xε
0 = 0,

where b : R→ R is uniformly Lipschitz. Via an application of the contraction principle one can
conclude from theorem 2.16 the following result.

Theorem 2.17 (Freidlin-Wentzell). The family (Xε
t ) satisfies the LDP in C0[0; t] with

the good rate function

I(ω) =

{
1
2

∫ t
0
|ω̇s − b(ωs)|2 ds, if ω ∈ H1, and

+∞ else.

For the proof, the contraction principle is applied to the map F : C0[0; t] → C0[0; t] where
f = F (g) is defined to be the unique solution of the ordinary differential equation

f(t) =
∫ t

0

b(f(s)) ds+ g(t) for all t ∈ [0; 1].

Further generalisations are possible, e.g. to the case of the SDE

dXε
t = b(Xε

t ) � dt+
√
εσ(Xε

t ) � dWt for t ∈ [0; 1], and
Xε

0 = x,

where x ∈ Rd, b : Rd → Rd is uniformly Lipschitz, and where all components of the matrix σ
are bounded, uniformly Lipschitz continuous functions.



Chapter 3

TheOrnstein-UhlenbeckProcess

In this chapter we will use the the Ornstein-Uhlenbeck process to explain some of the ques-
tions which we will answer more generally in later chapters. It will turn out that the simple
structure of the Ornstein-Uhlenbeck process will ease many calculations, but we still can see
what kind of results we can expect for the general case.

3.1 Introduction

Let B be a d-dimensional Brownian motion and α > 0 be a real valued parameter. Then the
solution of the stochastic differential equation

dXt = −αXt � dt+ dBt, (3.1)

X0 = x0 ∈ Rd

is called the Ornstein-Uhlenbeck process with parameter α and start in x0 (see, for ex-
ample, v. Weizsäcker and Winkler [WW90], p. 10). Mostly we will consider the case x0 = 0.

Using the results from chapter 1 it is clear that this equation has a unique solution. But
using the variation of constants method we can even explicitly solve this equation. Let

Xt = e−αtX0 +Bt − α
∫ t

0

e−α(t−s)Bs ds

or equivalently

Xt = e−αtX0 +
∫ t

0

e−α(t−s) dBs (3.2)

for all t ≥ 0. Then it is easy to check that the process X defined by this, is a solution of the
SDE (3.1). Figure 3.1 shows five paths of an Ornstein-Uhlenbeck process with parameter α =
1 and start in 0.

If we define the potential Φ: Rd → R as

Φ(x) =
α

2
|x|2 − d

4
log

α

π
for all x ∈ Rd,

then the drift b(x) = −αx can be expressed as b = − grad Φ and we find

exp
(
−2Φ(x)

)
=
(α
π

)d/2
exp
(
−α|x|2

)
=

1(
2π 1

2α

)d/2 exp
(
− |x|

2

2 1
2α

)
.

With theorem 1.4 we can conclude that the process X is reversible and has a d-dimensional
normal distribution with covariance matrix 1

2αId as its stationary distribution. From chapter 1
we already know the density of the distribution on the path space:

ϕt(ω) = exp
(
−α

2
(ω2
t − ω2

0 − t · d)− α2

2

∫ t

0

ω2
s ds

)
. (3.3)

23
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Figure 3.1: This figure shows five paths of an Ornstein-Uhlenbeck process on the interval [0; 10]
with parameter α = 1.

3.2 Strong Drift

In chapter 5 we will answer the following question: what is the large deviations behaviour of
the endpoint Xt of a diffusion process, if we increase the drift? For an Ornstein-Uhlenbeck
process this means that we replace the constant α with ϑα for ϑ > 0 and take ϑ→∞ then.

Let Xϑ be the solution of (3.1) with parameter ϑα and start in 0. The process has the
density

ϕϑt (ω) = exp
(
−ϑα

2
(ω2
t − ω2

0 − t · d)− ϑ2α2

2

∫ t

0

ω2
s ds

)
= exp

(
ϑF (ω)− ϑ2G(ω)

)
with

F (ω) =
α

2
(ω2

0 − ω2
t + d) and

G(ω) =
α2

2

∫ t

0

ω2
s ds.

The case of an Ornstein-Uhlenbeck process is especially simple here, because we know the
explicit distribution of Xϑ

t . It is a d-dimensional Gaussian distribution with expectation 0 and
covariance matrix

Σ =
1

2αϑ
(
1− exp(−2αϑ t)

)
· Id

(see for example section 8.3 of [Arn74]). Using the Laplace Principle (lemma 2.11) one can
easily see that

lim
ϑ→∞

1
ϑ

logP (Xϑ
t ∈ A) = − ess inf

x∈A
αx2 (3.4)

for all t > 0 holds. Note that this rate does not depend on t.

Here we want to give another proof for the one-dimensional case, which does not use the
explicit distribution of Xϑ

t but can be generalised to more general drift fields b. To ease the
notation we only consider the case t = 1. Formula (1–1.9.7) from [BS96] states

Ex

(
exp
(
−γ

2

2

∫ t

0

B2
s ds

)
;Bt ∈ dz

)
=

√
γ√

2π sinh(tγ)
exp
(
− (x2 + z2)γ cosh(tγ)− 2xzγ

2 sinh(tγ)

)
,
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which gives ∫
1A(ω1) exp

(
−ϑ2α

2

2

∫ 1

0

W 2
s ds

)
dW(ω)

=
∫
A

√
ϑα√

2π sinh(ϑα)
exp
(
−z

2ϑα cosh(ϑα)
2 sinh(ϑα)

)
dz

in our case. This is a generalisation of the Cameron-Martin-Formula

E
(
e−λ

R 1
0 B

2
t dt
)

=
(
cosh

√
2λ
)−1/2

(see [RY99], chapter XI). We are interested in the exponential tails of this expression for
ϑ→∞.

Recalling the definitions

sinh(x) =
ex − e−x

2
and cosh(x) =

ex + e−x

2

we observe that there are constants 0 < c1 < c2 with

c1e−αϑ/2 ≤
√
α√

2π sinh(ϑα)
≤ c2e−αϑ/2 for all ϑ > 1. (3.5)

(The value 1 is arbitrary, any positive number would do.) Also we find

cosh(ϑα)
sinh(ϑα)

=
eϑα + e−ϑα

eϑα − e−ϑα
−→ 1 for ϑ→∞. (3.6)

Because (3.5) and (3.6) are independent of and thus uniform in z we can conclude

lim
ϑ→∞

1
ϑ

log
∫

1A(ω1) exp
(
−ϑ2α

2

2

∫ 1

0

W 2
s ds

)
dW(ω)

= lim
ϑ→∞

1
ϑ

log
√
ϑ

∫
A

√
α√

2π sinh(ϑα)
exp
(
−z

2α

2
· cosh(ϑα)

sinh(ϑα)
· ϑ
)
dz

= lim
ϑ→∞

1
ϑ

log
∫
A

exp
(
−α

2
ϑ− z2α

2
ϑ
)
dz

= − ess inf
z∈A

(α
2

+
z2α

2
)

= −α
2

(1 + ess inf
z∈A

z2). (3.7)

This is the asymptotic behaviour for the exp(ϑ2G) term.
Now, we consider the full density by fitting in the factor exp(ϑF ). This is easy because the

function F only depends on the endpoint z of the path. We get

lim
ϑ→∞

1
ϑ

logP (Xϑ
1 ∈ A)

= lim
ϑ→∞

1
ϑ

log
∫

1A(ω1) exp
(
ϑF (ω)− ϑ2G(ω)

)
dW(ω)

= lim
ϑ→∞

1
ϑ

log
√
ϑ

∫
A

√
α√

2π sinh(ϑα)

· exp
(α

2
(1− z2) · ϑ− z2α

2
· cosh(ϑα)

sinh(ϑα)
· ϑ
)
dz

= lim
ϑ→∞

1
ϑ

log
∫
A

exp
(
−α

2
ϑ+ (

α

2
− z2α

2
) · ϑ− z2α

2
ϑ
)
dz

= − ess inf
z∈A

αz2.
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This is the expected result.

As mentioned above the stationary distribution µϑ of the Ornstein-Uhlenbeck process
with parameter ϑα is a d-dimensional Gaussian distribution with mean 0 and covariance mat-
rix 1

2ϑαId. Thus the result from theorem 2.13 coincides with the large deviation result about
Gaussian distributions from corollary 2.12 in this case. Using either result we find

lim
ϑ→∞

µϑ(A) = − inf
z∈A

αz2

for every measurable set A ⊆ R. Since the right hand side coincides with the rate from (3.4),
for any t > 0 the large deviation behaviour of the point Xϑ

t for ϑ→∞ is the same as the large
deviation behaviour of the stationary distribution.



Chapter 4

TauberianTheoremsofExponential
Type

In this chapter we study for positive random variables the relation between the behaviour of
the Laplace transform near infinity and the distribution near zero. Theorems of this kind are
called Tauberian theorems.

A result of de Bruijn shows that

E(e−λX) ∼ er
√
λ for λ→∞ and P (X ≤ ε) ∼ es/ε for ε ↓ 0

are in some sense equivalent and gives a relation between the constants r and s. We give
sharp bounds for the upper and lower limits for this relation. This result will turn out to be
a powerful tool to determine the large deviation behaviour of random variables where the
Laplace transform is known.

4.1 De Bruijn’s Theorem

From de Bruijn’s Tauberian theorem we can easily conclude the following result.

Theorem 4.1. Let X ≥ 0 be a random variable and A an event with P (A) > 0. Then the
limit

r = lim
λ→∞

1√
λ

logE(e−λX · 1A)

exists if and only if
s = lim

ε→0
ε logP (X ≤ ε,A)

exists and in this case we have s = −r2/4.

Proof. In Theorem 4.12.9 from [BGT87] let α = −1, φ(x) = 1/x, ψ(x) = 1/x2, and
B = |s|. This gives the case of A = Ω. For general sets A we switch to the measure Q( · ) =
P ( · ∩ A)/P (A) and the corresponding expectation. This reduces the case of general A to the
first case. (qed)

While dealing with expressions like the P (X ≤ ε,A) above we will frequently use the
following trivial scaling property.

Lemma 4.2. (a) Assume that s = limε↓0 ε logP (X ≤ ε) exists. Then for every c > 0, we
have

lim
ε↓0

ε logP (cX ≤ ε) = sc

27
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and
lim
ε↓0

ε logP (X ≤ cε) = s/c.

(b) The same relations hold for the lim sup and the lim inf.

4.2 An LDP for Brownian Paths with small L2-Norm

In this section we give a first application of the Tauber theorem from section 4.1. By applying
the theorem to the random variable

X =
∫ t

0

B2
s ds

where B is an one-dimensional Brownian motion we can derive an LDP for Brownian paths
conditioned to have small L2-norm.

The first step of this programme is to calculate the tails of the Laplace transform of X.
Formula (1.9.7) from [BS96] states

Ex

(
exp
(
−γ

2

2

∫ t

0

B2
s ds

)
;Bt ∈ dz

)
= ϕ(x; t, z)

where

ϕ(x; t, z) =
√
γ√

2π sinh(tγ)
exp
(
− (x2 + z2)γ cosh(tγ)− 2xzγ

2 sinh(tγ)

)
.

For a starting point x, measurable sets A1, . . . , An ⊆ R, and fixed times 0 < t1 < · · · < tn = t
the Markov property of Brownian motion gives then

Ex

(
exp
(
−γ

2

2

∫ t

0

B2
s ds

)
1A1(Bt1) · · · 1An(Btn)

)
=
∫
A1

· · ·
∫
An

ϕ(x; t1, z1)ϕ(z1; t2 − t1, z2)

· · ·ϕ(zn−1; tn − tn−1, zn) dzn · · · dz1.

We are only interested in the exponential tails of this expression for γ → ∞. First observe
that there are constants 0 < c1 < c2 and G > 0 with

c1e−γt/2 ≤
1√

2π sinh(γt)
≤ c2e−γt/2 for all γ > G.

Then we can use the relation |2xy| ≤ x2 + y2 to get

(x2 + z2)
2

· cosh(γt)− 1
sinh(γt)

≤ (x2 + z2) cosh(γt)− 2xz
2 sinh(γt)

≤ (x2 + z2)
2

· cosh(γt) + 1
sinh(γt)

for all x, z ∈ R.
Let ε > 0. Because of

cosh(γt)± 1
sinh(γt)

=
eγt + e−γt ± 1

eγt − e−γt
−→ 1 for γ →∞.

we can then find a γ0 > 0, such that whenever γ > γ0 the estimate

(x2 + z2)
2

· (1− ε) ≤ (x2 + z2) cosh(γt)− 2xz
2 sinh(γt)

≤ (x2 + z2)
2

· (1 + ε)
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holds for all x, z ∈ R. We conclude

lim sup
γ→∞

1
γ

logEx
(

exp
(
−γ

2

2

∫ t

0

B2
s ds

)
1A1(Bt1) · · · 1An(Btn)

)
≤ lim
γ→∞

1
γ

log γn/2cn2

∫
A1

· · ·
∫
An

e−γt1/2 exp
(
−γ x

2 + z2
1

2
(1− ε)

)
· e−γ(t2−t1)/2 exp

(
−γ z

2
1 + z2

2

2
(1− ε)

)
· · · ·

· e−γ(tn−tn−1)/2 exp
(
−γ

z2
n−1 + z2

n

2
(1− ε)

)
dzn · · · dz1

= lim
γ→∞

1
γ

log
∫
A1

· · ·
∫
An

exp
(
−γtn/2− γ(x2/2 + z2

1 + · · ·

· · ·+ z2
n−1 + z2

n/2)(1− ε)
)
dzn · · · dz1.

Note the special rôle of the endpoint tn = t. With the help of the Laplace principle (see
lemma 2.11) we can calculate the limit on the right hand side to get

lim sup
γ→∞

1
γ

logEx
(

exp
(
−γ

2

2

∫ t

0

B2
s ds

)
1A1(Bt1) · · · 1An(Btn)

)
≤ − ess inf

z1∈A1,...,zn∈An

(
t/2 + (x2/2 + z2

1 + · · ·+ z2
n−1 + z2

n/2)(1− ε)
)
.

for all ε > 0 and thus

lim sup
γ→∞

1
γ

logEx
(

exp
(
−γ

2

2

∫ t

0

B2
s ds

)
1A1(Bt1) · · · 1An(Btn)

)
≤ − ess inf

z1∈A1,...,zn∈An
(t/2 + x2/2 + z2

1 + · · ·+ z2
n−1 + z2

n/2).

A completely analogous calculation (using the lower bounds from above) gives

lim inf
γ→∞

1
γ

logEx
(

exp
(
−γ

2

2

∫ t

0

B2
s ds

)
1A1(Bt1) · · · 1An(Btn)

)
≥ − ess inf

z1∈A1,...,zn∈An
(t/2 + x2/2 + z2

1 + · · ·+ z2
n−1 + z2

n/2).

and together this shows

lim
γ→∞

1
γ

logEx
(

exp
(
−γ

2

2

∫ t

0

B2
s ds

)
1A1(Bt1) · · · 1An(Btn)

)
= − ess inf

z1∈A1,...,zn∈An
(t/2 + x2/2 + z2

1 + · · ·+ z2
n−1 + z2

n/2).
(4.1)

Corollary 4.3. Let B be a one-dimensional Brownian Motion. Then

lim
ε↓0

ε · logPx

(∫ t

0

B2
s ds ≤ ε,Bt ∈ A

)
= − (t+ x2 + ess infz∈A z2)2

8

for every x ∈ R and every set A with P (Bt ∈ A) > 0 and in particular

lim
ε↓0

ε · logP
(∫ t

0

B2
s ds ≤ ε

)
= − t2

8
.

Proof. Setting λ = γ2/2 in equation (4.1) gives

r = lim
λ→∞

1√
λ

logEx(e−λ
R t
0 B

2
s ds · 1A(Bt)) = − 1√

2
(t+ x2 + ess inf

z∈A
z2).

Now we can use the Tauber theorem to get the first equality. The second claim follows by
taking x = 0 and A = R. (qed)
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At a first glance it may seem strange that the rate is quadratic in the interval length t.
But the following heuristic reveals that this actually makes sense: write the time interval
[0; t] as the disjoint union of intervals I1, . . . , In and assume for the moment that the events∫
Ik
B2
s ds < ε are asymptotically independent. Further it makes sense to assume that the

contribution of an interval Ik to the integral
∫ t

0
B2
s ds is proportional to its length. So we

consider

lim
ε↓0

ε · logP

(
n⋂
k=1

{∫
Ik

B2
s ds ≤

|Ik|
t
· ε
})

= −1
8

n∑
k=1

|Ik|2 t/|Ik| = −
1
8
t2,

where the rates were calculated using the scaling property from lemma 4.2. The result is
the same as the rate which we got for the full interval. So the quadratic dependency on t is
compatible with the assumption that the contributions of the intervals I1, . . . , In are asymp-
totically independent and proportional to the interval length.

Example 4.1. With the help of corollary 4.3 we can reproduce the results of example 2.2
for the L2-norm instead of the supremum norm. The exponential rate of P

(
‖B‖2 > c

)
for

c→∞ is again calculated with Schilder’s theorem. With ε = 1/c2 we have∫ t

0

B2
s ds > c2 ⇐⇒

√
εB ∈

{
ω
∣∣ ∫ t

0

ω2
s ds > 1

}
=: A.

The rate function I(ω) under the constraint
∫ t

0
ω2
t dt = β is minimal for the function ω̃ with

ω̃s =
√

2β/t sin(sπ/2t)

for all s ∈ [0; t] and we get the minimal value

I(ω̃) =
1
2

∫ t

0

2β
t
· π

2

4t2
cos2

(sπ
2t
)
ds =

βπ2

8t2
.

Thus the set A is a continuity set of the rate function and we find

lim
c→∞

1
c2

logP
(
‖B‖2 > c

)
= lim

ε↓0
ε logP

(√
εB ∈ A

)
= − inf

{1
2

∫ t

0

ω̇2
s ds

∣∣∣ ω ∈ A}
= − inf

β>1

βπ2

8t2
= − π

2

8t2
.

This is consistent with the results of example 2.2. Since the event ‖B‖2 > c implies
‖B‖∞ > c/

√
t we expect

lim
c→∞

1
c2

logP
(
‖B‖2 > c

)
≤ lim
c→∞

1
c2

logP
(
‖B‖∞ > c/

√
t
)

=
1
t

lim
c→∞

1
c2

logP
(
‖B‖∞ > c

)
and indeed the correspoding rates are −π2/8t2 for the left hand side and −4/8t2 for the right-
hand side.

The large deviation behaviour of ‖B‖2 < ε for ε ↓ 0 is described by corollary 4.3. We get

lim
ε↓0

ε2 logP
(
‖B‖2 < ε

)
= lim

ε↓0
ε2 logP

(∫ t

0

B2
s ds < ε2

)
= − t2

8
.
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Again, we can compare this with the results from example 2.2. Whenever we have ‖B‖∞ <
ε/
√
t we also have ‖B‖2 < ε and thus we should have

lim
ε↓0

ε2 logP
(
‖B‖2 < ε

)
≥ lim

ε↓0
ε2 logP

(
‖B‖∞ < ε/

√
t
)

= t lim
ε↓0

ε2 logP
(
‖B‖∞ < ε

)
.

The results from above and from example 2.2 are −t2/8 for the left hand side and −π2t2/8 for
the right hand side, so everything fits together well.

Later we will need the results of Corollary 4.3 uniformly in the initial condition x. To
achive this uniformity we use a version of Anderson’s inequality (this is corollary 5 in Ander-
son’s original paper [And55]):

Lemma 4.4. Let (Xs)0≤s≤t and (Ys)0≤s≤t be two separable Gaussian processes and
k ∈ [0; 1] with E(Xs) = kE(Ys) and Cov(Xr, Xs) = Cov(Yr, Ys) = C(r, s) for all 0 ≤ r, s ≤ t.
Assume that C is continuous. Then

P
(∫ t

0

X2
s ds ≤ ε

)
≥ P

(∫ t

0

Y 2
s ds ≤ ε

)
and

P
(

sup
0≤s≤t

|Xs| ≤ ε
)
≥ P

(
sup

0≤s≤t
|Ys| ≤ ε

)
for all ε > 0.

Lemma 4.5. Let B be a one-dimensional Brownian Motion and A ⊆ R closed. Then

lim
ε↓0

ε · log sup
x∈A

Px

(∫ t

0

B2
s ds ≤ ε

)
= − inf

x∈A

(t+ x2)2

8
.

Proof. Let x, y ∈ A with 0 < |x| < |y|. Then lemma 4.4 applied to X = B+|x|, Y = B+|y|
and k = |x/y| and the symmetry of Brownian motion gives

Px

(∫ t

0

B2
s ds ≤ ε

)
≥ Py

(∫ t

0

B2
s ds ≤ ε

)
. (4.2)

Now choose x ∈ A with |x| = inf{ |y| | y ∈ A }. Then the estimate (4.2) gives

Px

(∫ t

0

B2
s ds ≤ ε

)
= sup
y∈A

Py

(∫ t

0

B2
s ds ≤ ε

)
and the claim follows with corollary 4.3. (qed)

Let X be the space of all maps ω : [0; t] → R such that ω0 = 0 equipped with the topology
of pointwise convergence. On X define the family (Pε)ε>0 of measures by

Pε(A) =W
(
A
∣∣∣ ∫ t

0

W 2
s ds ≤ ε

)
for all measurable A ⊆ X .

Theorem 4.6. On the space X the family (Pε)ε>0 satisfies the LDP with the good rate
function

I(ω) = sup
{

(t+ 2ω2
t1 + · · ·+ 2ω2

tn + ω2
t )2/8− t2

∣∣ n ∈ N, 0 < t1 < · · · < tn < t}

for all ω ∈ X .
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Proof. For measurable sets A1, . . . , An ⊆ R and fixed times 0 < t1 < · · · < tn = t the
Tauber theorem 4.1 applied to equation (4.1) gives

lim
ε↓0

ε · logP
(

(Bt1 , Bt2 , . . . , Btn) ∈ A1 ×A2 × · · · ×An
∣∣∣ ∫ t

0

B2
s ds ≤ ε

)
= lim

ε↓0
ε · logP

(
Bt1 ∈ A1, Bt2 ∈ A2, . . . , Btn ∈ An,

∫ t

0

B2
s ds ≤ ε

)
− lim

ε↓0
ε · logP

(∫ t

0

B2
s ds ≤ ε

)
= −

(
t+ ess inf

z∈A1×A2×···×An
(2z2

1 + · · ·+ 2z2
n−1 + z2

n)
)2
/8 + t2/8. (4.3)

Using An = R we can drop the assumption tn = t and arrive at the following result. For all
measurable sets A1, . . . , An ⊆ R and fixed times 0 < t1 < · · · < tn ≤ t we have

lim
ε↓0

ε · logP
(

(Bt1 , Bt2 , . . . , Btn) ∈ A1 ×A2 × · · · ×An
∣∣∣ ∫ t

0

B2
s ds ≤ ε

)
= − ess inf

z∈A1×A2×···×An
It1,...,tn(z)

where It1,...,tn : Rn → R+ is defined by

It1,...,tn(z) =
1
8

{(
t+ 2z2

1 + · · ·+ 2z2
n

)2−t2, if tn < t, and(
t+ 2z2

1 + · · ·+ 2z2
n−1 + z2

n

)2−t2 for tn = t.

With the exception of the endpoint t the actual positions of the ti have no influence on the
rate. The endpoint t is special, because the process does not need to return to the origin
quickly after a visit in An at time t, so at the end of the interval it is “cheaper” to be far away
from the origin.

Because the rate function It1,...,tn is continuous we get an LDP on Rn as in the remark on
page 19. From this we can get the LDP on the path space with rate function

I(ω) = sup
{
It1,...,tn(ωt1 , . . . , ωtn)

∣∣ n ∈ N, 0 < t1 < · · · < tn ≤ t}

by applying the Dawson-Gärtner theorem about large deviations for projective limits (see
theorem 2.9). (qed)

Note that the rate function I in the theorem will typically take its infimum for a non-
continuous path ω. Assume ω is continuous and non-zero. Let ε = ‖ω‖∞/2. Then we find
infinitely many distinct times t with ω2

t > ε2 and thus I(ω) = +∞.

4.3 Upper and Lower Limits

The remaining part of this chapter contains the proof of a theorem about upper and lower
limits in the Tauberian theorem. In contrast to theorem 4.1 the result of this section applies
without any assumption on the distribution of X.

Theorem 4.7. Let X ≥ 0 be a random variable and A an event with P (A) > 0. Define
the upper and lower limits

r̄ = lim sup
λ→∞

1√
λ

logE(e−λX · 1A) and r
¯

= lim inf
λ→∞

1√
λ

logE(e−λX · 1A)

as well as
s̄ = lim sup

ε→0
ε logP (X ≤ ε,A) and s

¯
= lim inf

ε→0
ε logP (X ≤ ε,A).

Then −r̄2/4 = s̄ and for the lower limits we have the sharp estimates −r
¯

2 ≤ s
¯
≤ −r

¯
2/4.
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Proof. As in the proof of theorem 4.1 it is enough to consider the case A = R. First note
that, because X is positive, the expectation E(e−λX) exists for all λ ≥ 0 and is a number
between 0 and 1. So all the values r̄, r

¯
, s̄, and s

¯
will be negative.

The estimate s̄ ≤ −r̄2/4 follows from the exponential Markov inequality: Let ε > 0. From

E(e−λX) ≥ e−λεP
(
e−λX ≥ e−λε

)
= e−λεP

(
X ≤ ε

)
we get P (X ≤ ε) ≤ eλεE(e−λX) and thus

ε logP (X ≤ ε) ≤ ε
(
λε+ logE(e−λX)

)
for all λ ≥ 0.

For λ = r̄2/4ε2 the bound becomes

ε logP (X ≤ ε) ≤ r̄2/4 + ε logE(e−Xr̄
2/4ε2).

Taking upper limits we get

s̄ = lim sup
ε↓0

ε · logP (X ≤ ε) ≤ r̄2

4
+ lim sup

ε↓0
ε · logE(e−Xr̄

2/4ε2)

=
r̄2

4
− r̄

2
lim sup
ε↓0

2ε
|r̄|

logE(e−X(r̄/2ε)2)

=
r̄2

4
− r̄

2
· r̄ = − r̄

2

4
.

Replacing all upper limits in the previous argument with lower limits gives s
¯
≤ −r

¯
2/4.

A more careful analysis is necessary to prove s̄ ≥ −r̄2/4. We can express r̄ via the lower
tails of X:

r̄ = lim sup
λ→∞

1√
λ

logE(e−λX)

= lim sup
λ→∞

1√
λ

log
∫ 1

0

P (e−λX ≥ t) dt

t = e−u

= lim sup
λ→∞

1√
λ

log
∫ ∞

0

P (X ≤ u/λ)e−u du

= lim sup
ε↓0

ε log
∫ ∞

0

P (X ≤ uε2)e−u du.

The definition of s̄ gives that for every δ with 0 < δ < |s̄| there exists an E > 0, such that for
every η < E we have

P (X ≤ η) ≤ η−3/2e(s̄+δ)/η.

I want to use the relation ∫ ∞
0

zu−3/2 exp
(
−z

2

u
− u
)
du =

√
πe−2z.

In the context of the above estimate this gives∫ ∞
0

P (X ≤ uε2)e−u du ≤
∫ E/ε2

0

(ε2u)−3/2 exp
(
−
(√|s̄+ δ|

ε

)2 · 1
u
− u
)
du

+
∫ ∞
E/ε2

1 · e−u du

≤ ε−3 ε√
|s̄+ δ|

√
πe−2

√
|s̄+δ|/ε + e−E/ε

2

The sum is dominated by the first term, so we get

r̄ ≤ −2
√
|s̄+ δ| whenever 0 < δ < |s̄|

and thus r̄ ≤ −2
√
|s̄|. Because both, r̄ and s̄, are negative this shows s̄ ≥ −r̄2/4.
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Finally, we can prove −r
¯

2 ≤ s
¯
. Using the estimate e−λx ≤ 1[0;ε](x) + e−λε1(ε;∞)(x) for all

x ≥ 0 with λ = |s
¯
|/ε2 gives

E
(
e−|s|X/ε

2)
≤ P (X ≤ ε) + e−|s¯

|ε/ε2P (X > ε) ≤ P (X ≤ ε) + e−|s¯
|/ε.

Because for the second term in the sum the limit limε↓0 ε log e−|s¯
|/ε = −|s

¯
| exists, we can

conclude

−|r
¯
|
√
|s
¯
| = lim inf

ε↓0
ε logE

(
e−|s|X/ε

2)
≤ max

(
lim inf
ε↓0

ε logP (X ≤ ε) , lim
ε↓0

ε log e−|s¯
|/ε
)

= max
(
−|s

¯
| , −|s

¯
|
)

= −|s
¯
|.

Taking squares the estimate becomes r
¯

2 ≥ |s
¯
| and multiplication with −1 gives the result.

The upper bound on s
¯
is sharp, because in the case of theorem 4.1 we have equality there.

The fact that the lower bound for the lower limit s
¯
is sharp is shown by the example at the

end of this section. (qed)

Corollary 4.8. Under the assumptions of theorem 4.7 we have r̄ = −2
√
|s̄| and for the

lower limits we have the sharp estimates −2
√
|s
¯
| ≤ r

¯
≤ −

√
|s
¯
|.

Proof. On (−∞; 0] the map x 7→ −
√
|x| is strictly monotonically increasing. Thus for

r, s ≤ 0 we have s ≤ −r2 if and only if −
√
|s| ≤ r. Applying this to the results of theorem 4.7

proves the corollary. (qed)

Note that theorem 4.7 does not directly imply theorem 4.1. If the limit s from theorem 4.1
exists, then we get

s ≤ −r
¯

2/4 ≤ −r̄2/4 = s,

i.e. the limit r also exists and satisfies s = −r2/4. But if we assume that r exists, then the-
orem 4.7 only gives

−r2 ≤ s
¯
≤ s̄ = −r2/4

and we cannot directly conclude that the limit s from theorem 4.1 exists.

The following example shows that for general random variables X the lower bound −r
¯

2 ≤
s
¯
on the lower limit s

¯
is sharp.

Example 4.2. Let s < 0 and (εn)n∈N0 be a strictly decreasing sequence with ε0 = ∞ and
limn→∞ εn = 0. Then we have∑

n∈N

(
e−|s|/εn−1 − e−|s|/εn

)
= e−|s|/ε0 − lim

n→∞
e−|s|/εn = 1− 0 = 1

and we can define a random variable X with values in the set { εn | n ∈ N } by

P (X = εn) = e−|s|/εn−1 − e−|s|/εn

for all n ∈ N. This random variable has

P (X ≤ ε) =
∞∑

n=n(ε)

(
e−|s|/εn−1 − e−|s|/εn

)
= e−|s|/εn(ε)−1

with n(ε) = min{n ∈ N | εn ≤ ε } and consequently

ε logP (X ≤ ε) = −|s| ε

εn(ε)−1
.
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By definition of n(ε) we have εn(ε) ≤ ε < εn(ε)−1. This allows us to calculate the exponential
tail rates s

¯
= s and, because s is negative, s̄ = s · lim infn→∞ εn/εn−1.

Choosing different sequences (εn) leads to different values for s̄, r̄, and r
¯
. For our example

let q < 1 and define εn = qn for all n ∈ N. The above calculation shows s
¯

= s and s̄ = qs.
The theorem gives r̄ = −2

√
q|s| and r

¯
∈ [−2

√
|s|;−

√
|s|]. We want to further examine r

¯
. The

Laplace transform of X calculates as

E(e−λX) =
∑
n∈N

e−λq
n(

e−|s|/q
n−1
− e−|s|/q

n)
=
∑
n∈N

e−λq
n−|s|/qn−1(

1− e−|s|(1−q)/q
n)
.

Because of exp(−|s|(1− q)/qn)→ 0 for n→∞ we have 1/2 < 1− exp(−|s|(1− q)/qn) < 1 for
sufficiently large n. Define n(λ) by qn(λ) ∈ [q

√
|s|/λ;

√
|s|/λ). With f(x) = exp(−λx − q|s|/x)

we have
E(e−λX) > exp

(
−λqn(λ) − |s|/qn(λ)−1

)1
2

=
1
2
f(qn(λ))

for sufficiently large λ. Because f is increasing on the interval (0;
√
q|s|/λ] and decreasing on

[
√
q|s|/λ;∞) we can estimate f on [q

√
|s|/λ;

√
|s|/λ) by its values on the boundaries. This

leads to
E(e−λX) >

1
2

min
(
f(q
√
|s|/λ), f(

√
|s|/λ)

)
=

1
2

exp
(
−(1 + q)

√
λ|s|

)
for sufficiently large λ. Taking lower limits we get

−
√
|s| ≥ r

¯
≥ −(1 + q)

√
|s|

where the first inequality comes from the theorem or equivalently

−r
¯

2 ≤ s
¯
≤ −r

¯
2/(1 + q)2.

This shows that by choosing small values of q we can force s
¯
to be arbitrarily close to −r

¯
2

without −r
¯

2 being close to 0. So the lower bound on s
¯
from the theorem is sharp.
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Chapter 5

DiffusionswithStrongDrift

In this chapter we derive an LDP for the behaviour of the endpoint Xt of a diffusion when
the drift is strong. This is a generalisation of the result for the Ornstein-Uhlenbeck process in
chapter 3.2.

We want to determine the large deviations behaviour for the endpoint Xt of solutions of
the R-valued stochastic differential equation

dXϑ
s = ϑb(Xs) � ds+ dBs on [0; t]

Xϑ
0 = z ∈ R

(5.1)

for large values ϑ.
The situation here is different from the situation in the Freidlin-Wentzell theorem. In our

case the length t of the interval is fixed, and instead ϑ goes to infinity. One can rescale equa-
tion (5.1) as follows. Define Y ϑs = Xϑ

t/ϑ for all s ∈ [0;ϑt]. Then by lemma 1.3 the process Y ϑ is
a solution of the SDE

dY ϑs = b(Ys) � ds+
1√
ϑ
dBs on [0;ϑt]

Y ϑ0 = 0

and we have
P (Xϑ

t ∈ A) = P (Y ϑϑt ∈ A).

The rescaled problem looks more similar to the situation from the Freidlin-Wentzell theory,
because now the noise decreases. But the length of the transformed time interval depends
on ϑ, so the Freidlin-Wentzell theorem still cannot be applied easily.

From Lemma 1.5 we know the density of the distribution of Xϑ
t : assuming Xϑ

0 = 0 and
b = −∇Φ we get

P (Xϑ
t ∈ A) =

∫
1A(ωt) exp

(
ϑF (ω)− ϑ2G(ω)

)
dW(ω)

where

F (ω) = Φ(ω0)− Φ(ωt) +
1
2

∫ t

0

∆Φ(ωs) ds and

G(ω) =
1
2

∫ t

0

b2(ωs) ds.

It will turn out, that the only paths which contribute for the large deviations behaviour
of Xϑ

t are those, which correspond to very small values of G. This chapter consists of three

37
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parts. First we examine the situation that during a short time interval the process runs over
a long distance while still keeping

∫
b2(ωs) ds small. This will be used for the initial and the

final piece of the path. In the second section we examine the situation that
∫
b2(ωs) ds is small

over a long interval of time. This will be used to treat the main piece of the path. In the third
section we fit these two results together in order to find the exponential rate for the LDP.

5.1 Reaching the Final Point

The following part helps to estimate the probability that the path travels quickly between an
equilibrium point of the drift and the final resp. initial point. Here Schilder’s theorem can be
applied and we will reduce the evaluation of the rate function to a variational problem.

The key for evaluating the rate function in proposition 5.3 below is the following lemma.
We defer the proof of the lemma until the end of the section.

Lemma 5.1. Let v : R → [0;∞) be a positive, two times continuously differentiable
function with lim inf |x|→∞ v(x) > 0 and m ∈ R with v(x) = 0 if and only if x = m and
v′′(m) > 0. For a, z ∈ R and β ≥ 0 define

Ma,z,β
t =

{
ω ∈ C[0; t]

∣∣∣ ω0 = 0, ωt = a− z, 1
2

∫ t

0

v(ωs + z) ds = β
}

and
J(a, z) =

1
4

(∣∣∫ m

z

√
v(x) dx

∣∣+
∣∣∫ a

m

√
v(x) dx

∣∣)2

.

Consider the rate function

It(ω) =

{
1
2

∫ t
0
|ω̇|2 ds, if ω is absolutely continuous, and

+∞ else.

Let K1,K2 ⊆ R be compact sets with 0 /∈ K1 ∩K2 and B ⊆ R+ be bounded with 0 ∈ B. Then
we have

inf
{
It(ω)

∣∣∣ ω ∈ ⋃
β∈B

Ma,z,β
t

}
−→ 1

supB
J(a, z) for t→∞,

uniformly over a ∈ K2 and z ∈ K1.

Lemma 5.2. Let Ma,z,β
t be as in lemma 5.1. Then for every pair K1,K2 ⊆ R of compact

sets the set
M =

⋃
z∈K1

⋃
a∈K2

⋃
0≤β≤1

Ma,z,β
t

is closed in C0([0; t],R).

Proof. By definition of the sets Ma,z,β
t we have

M =
⋃
z∈K1

{
ω ∈ C[0; t]

∣∣∣ ω0 = 0, ωt + z ∈ K2,
1
2

∫ t

0

v(ωr + z) dr ≤ 1
}
.

Assume that ω ∈ C0([0; t],R) \M . The either ωt + z /∈ K2 for all z ∈ K1, i.e. ωt lies outside the
compact set K2 −K1, or

1
2

∫ t

0

v(ωr + z) dr > 1

for every z ∈ K2, i.e.

inf
z∈K2

1
2

∫ t

0

v(ωr + z) dr > 1

because K2 is compact and v and the integral are continuous. In both cases we can find an
ε > 0, such that the ball B(ω, ε) also lies in C0([0; t],R) \M . Thus M is the complement of an
open set. (qed)
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The main result of this section is the following proposition.

Proposition 5.3. Let B be a one-dimensional Brownian motion with start in z ∈ R and
b : R→ R be a two times continuously differentiable function with lim inf |x|→∞ |b(x)| > 0 and
m ∈ R with b(x) = 0 if and only if x = m and b′(m) 6= 0. Then for every pair of compact sets
K1,K2 ⊆ R we have

lim sup
t→∞

lim sup
ε↓0

sup
z∈K1

ε logPz
(1

2

∫ tε

0

b2(Bs) ds ≤ ε,Btε ∈ K2

)
≤ −1

4
inf
z∈K1

inf
a∈K2

(∣∣∫ m

z

|b(x)| dx
∣∣+
∣∣∫ a

m

|b(x)| dx
∣∣)2

and for every z ∈ R and every open set O ⊆ R we have

lim inf
t→∞

lim inf
ε↓0

ε logPz
(1

2

∫ tε

0

b2(Bs) ds ≤ ε,Btε ∈ O
)

≥ −1
4

inf
a∈O

(∣∣∫ m

z

|b(x)| dx
∣∣+
∣∣∫ a

m

|b(x)| dx
∣∣)2

.

The modulus of the integrals is taken to properly handle the cases m < z and a < m.

Proof. We want to apply Schilder’s theorem and to evaluate the rate function using
lemma 5.1. Let K1,K2 ⊆ R be compact. Define the process B̃ by setting B̃r = (Brε − z)/

√
ε

for every r > 0. Then B̃ is a Brownian motion with start in 0 and we get

Pz

(
Btε ∈ K2,

1
2

∫ tε

0

b2(Bs) ds ≤ ε
)

s = rε= Pz

(
Btε ∈ K2,

1
2

∫ t

0

b2(Brε) dr ≤ 1
)

= P
(√

εB̃t + z ∈ K, 1
2

∫ t

0

b2(
√
εB̃r + z) dr ≤ 1

)
= P

(√
εB̃ ∈

⋃
a∈K2

⋃
β≤1

Ma,z,β
t

)
and thus

sup
z∈K1

Pz

(
Btε ∈ K2,

1
2

∫ tε

0

b2(Bs) ds ≤ ε
)

≤ P
(√

εB̃ ∈
⋃
z∈K1

⋃
a∈K2

⋃
β≤1

Ma,z,β
t

)
.

(5.2)

From lemma 5.2 we know that the set
⋃
z∈K1

⋃
a∈K2

⋃
β≤1M

a,z,β
t is closed in the path

space
(
C0[0; t], ‖ · ‖∞

)
, so we can apply Schilder’s theorem (theorem 2.16) to get

lim sup
ε↓0

ε log sup
z∈K1

P
(√

εB̃ ∈
⋃
z∈K1

⋃
a∈K2

⋃
β≤1

Ma,z,β
t

)
≤ − inf

{
It(ω)

∣∣∣ ω ∈ ⋃
z∈K1

⋃
a∈K2

⋃
β≤1

Ma,z,β
t

}
= − inf

z∈K1
inf
a∈K2

inf
β≤1

inf
{
It(ω)

∣∣ ω ∈Ma,z,β
t

}
.

First assume m ∈ K1 ∩K2. Define the path ω by ωs = 0 for all s ∈ [0; t]. Then clearly we
have ω ∈Mm,m,0

t for every t and since we find I(ω) = 0 we have

inf
{
It(ω)

∣∣∣ ω ∈ ⋃
β∈B

Ma,z,β
t

}
= 0
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for all t ≥ 0. On the other hand we have J(m,m) = 0.
Otherwise the evaluation of the infimum is done in lemma 5.1. Using v(x) = b2(x) we can

for every η > 0 find a t0 > 0, such that

inf
β≤1

inf
{
It(ω)

∣∣ ω ∈Ma,z,β
t

}
≥ J(a, z)− η

for all z ∈ K1, a ∈ K2 and t ≥ t0. This gives

lim sup
ε↓0

ε log sup
z∈K1

P
(√

εB̃ ∈
⋃
z∈K1

⋃
a∈K2

⋃
β≤1

Ma,z,β
t

)
≤ − inf

z∈K1
inf
a∈K2

inf
m∈N

J(a, z) + η

= −1
4

inf
z∈K1

inf
a∈K2

(∣∣∫ m

z

|b(x)| dx
∣∣+
∣∣∫ a

m

|b(x)| dx
∣∣)2

+ η

for every η > 0. Together with the relation (5.2) this proves the upper bound.

For the lower bound we follow the same procedure. Without loss of generality we can
assume that O is bounded. Here we get

Pz

(
Btε ∈ O,

1
2

∫ tε

0

b2(Bs) ds ≤ ε
)

≥ Pz
(
Btε ∈ O,

1
2

∫ tε

0

b2(Bs) ds < ε
)

= P
(√

εB̃ ∈
⋃
a∈O

⋃
β<1

Ma,z,β
t

)
where the set⋃

a∈O

⋃
β<1

Ma,z,β
t =

{
ω ∈ C[0; t]

∣∣∣ ω0 = 0, ωt ∈ O − z,
1
2

∫ t

0

b2(ωr + z) dr < 1
}

is open in
(
C0[0; t], ‖ · ‖∞

)
. So we can use the lower bound from Schilder’s theorem and

lemma 5.1 to finish the proof. (qed)

Corollary 5.4. Under the assumptions of proposition 5.3 we have

lim
η↓0

lim inf
t→∞

lim inf
ε↓0

ε log inf
m−η≤z≤m+η

Pz

(1
2

∫ tε

0

b2(Bs) ds ≤ ε,Btε ∈ O
)

≥ −1
4

inf
a∈O

(∫ a

m

|b(x)| dx
)2

for every open set O ⊆ R.

Proof. For z ∈ R define

Mz
t =

{
ω ∈ C[0; t]

∣∣∣ ω0 = 0, ωt + z ∈ O, 1
2

∫ t

0

b2(ωs + z) ds < 1
}
.

Let δ > 0. Choose an ω̃ ∈ Mm
t with It(ω̃) < inf{ It(ω) | ω ∈ Mm

t } + δ. Because O is open
and b and the integral are continuous we can find an E > 0, such that for every η < E the ball
Bη(ω̃) ⊆ C0([0; t],R) is contained in the set Mz

t . This gives

lim inf
ε↓0

ε log inf
m−η≤z≤m+η

Pz

(1
2

∫ tε

0

b2(Bs) ds ≤ ε,Btε ∈ O
)

= lim inf
ε↓0

ε log inf
m−η≤z≤m+η

Pz

(√
εB ∈Mz

t

)
≥ lim inf

ε↓0
ε log inf

m−η≤z≤m+η
Pz

(√
εB ∈ Bη(ω̃)

)
.
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and using Schilder’s theorem and the relation

− inf
{
It(ω)

∣∣ ω ∈ Bη(ω̃)
}
≥ −It(ω̃) > − inf

{
It(ω)

∣∣ ω ∈Mm
t

}
− δ

we find

lim inf
ε↓0

ε log inf
m−η≤z≤m+η

Pz

(1
2

∫ tε

0

b2(Bs) ds ≤ ε,Btε ∈ O
)

≥ − inf
{
It(ω)

∣∣ ω ∈ Bη(ω̃)
}

> − inf
{
It(ω)

∣∣ ω ∈Mm
t

}
− δ.

Now we can evaluate the infimum on the right hand side as we did in proposition 5.3. We
get

lim inf
t→∞

lim inf
ε↓0

ε log inf
m−η≤z≤m+η

Pz

(1
2

∫ tε

0

b2(Bs) ds ≤ ε,Btε ∈ O
)

≥ −1
4

inf
a∈O

(∫ a

m

|b(x)| dx
)2

− δ

for every η < E. Taking the limit δ ↓ 0 finishes the proof. (qed)

Before we can prove lemma 5.1, we need some preparations. For the remaining part of this
section we assume throughout that v is non-negative and two times continuously differentiable
and that a, z ∈ R are fixed.

Notation: For x, y ∈ R we will write [x; y] for the closed interval between x and y; in the
case x < y this is to be read as [y;x] instead.

As a first step towards the proof of lemma 5.1 we get rid of the parameter β.

Lemma 5.5. Let {0} ⊂ B ⊆ R+ be bounded. Assume that

lim
t→∞

inf
{
It(ω)

∣∣ ω ∈Ma,z,1
t

}
= J(a, z)

locally uniform in a, z ∈ R. Then lemma 5.1 holds.

Proof. Let β > 0. For ω ∈ C0[0; t] define ω̃ ∈ C0[0; t/β] by

ω̃r = ωrβ for all r ∈ [0; t/β].

Then we have ω̃0 = 0, ω̃t/β = ωt, and

1
2

∫ t/β

0

v(ω̃r + z) dr
s = rβ

=
1
β
· 1

2

∫ t

0

v(ωs + z) ds.

Thus ω 7→ ω̃ is a one-to-one mapping from Ma,z,β
t onto Ma,z,1

t/β .
Because of

It/β(ω̃) =
1
2

∫ t/β

0

˙̃ω2
r dr =

β2

2

∫ t/β

0

ω̇2
rβ dr

s = rβ
=

β

2

∫ t

0

ω̇2
s ds = βIt(ω)

we find
inf
{
It(ω)

∣∣ ω ∈Ma,z,β
t

}
=

1
β

inf
{
It(ω)

∣∣ ω ∈Ma,z,1
t/β

}
.
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Since m /∈ K1 ∩K2 every continuous path ω with ω0 = 0 and ωt = a− z has

1
2

∫ t

0

v(ωs + z) ds > 0,

the set Ma,z,0
t is empty in this case and we find

inf
{
It(ω)

∣∣∣ ω ∈ ⋃
β∈B

Ma,z,β
t

}
= inf
β∈B

inf
{
It(ω)

∣∣ ω ∈Ma,z,β
t

}
= inf
β∈B

1
β

inf
{
It(ω)

∣∣ ω ∈Ma,z,1
t/β

}
.

Now let K1,K2 ⊆ R be compact. Let η > 0 and choose a t0 > 0 with∣∣∣inf
{
It(ω)

∣∣ ω ∈Ma,z,1
t

}
− J(a, z)

∣∣∣ < η supB

for all t > t0, z ∈ K1, and a ∈ K2. Then for every t > t0 supB we have∣∣∣ 1
β

inf
{
It(ω)

∣∣ ω ∈Ma,z,1
t/β

}
− 1
β
J(a, z)

∣∣∣ < η · supB
β

and taking the infimum over all β ∈ B on both sides gives∣∣∣inf
{
It(ω)

∣∣∣ ω ∈ ⋃
β∈B

Ma,z,β
t

}
− 1

supB
J(a, z)

∣∣∣ ≤ η
for all t > t0 supB, z ∈ K1, and a ∈ K2. Because η was arbitrary this finishes the proof.

(qed)

Because It(ω + z) = It(ω) we can shift every path from Ma,z,1
t by z and get

inf
{
It(ω)

∣∣ ω ∈Ma,z,1
t

}
= inf

{
It(ω)

∣∣∣ ω0 = z, ωt = a,
1
2

∫ t

0

v(ωs) ds = β
}
.

For the moment assume that there is a path ω̃ with It(ω̃) = inf
{
It(ω)

∣∣ ω ∈ Ma,z,1
t

}
. Later we

will show, that such an ω̃ in fact does exist. In order to evaluate the rate function It for this
path ω̃, we solve the Euler-Lagrange␣equations (see section 12 of [GF63]) for extremal values
of It under the constraint

K(ω) =
1
2

∫ t

0

v(ωs) ds
!= 1

and with the boundary conditions

ω0 = z and ωt = a.

Because v ∈ C2(R) we can use theorem 1 from section 12.1 of [GF63] to find, that for every
extremal point ω of I under the given constraints there is a constant λ, such that ω solves the
equations

ω̈s = λv′(ωs + z) for all s ∈ (0; t], and ω0 = z (5.3a)

1
2

∫ t

0

v(ωs) ds = 1 (5.3b)

ωt = a. (5.3c)

Existence of solutions: the autonomous second order equation (5.3a) describes the motion
of a classical particle on the real line in the potential −λv. The differential equation can be
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reduced to an autonomous first order equation in the plane with the usual trick: defining
x(s) = (ωs, ω̇s) and F (x1, x2) =

(
x2, λv

′(x1)
)
the equation becomes

ẋ(s) = F (x(s)) for all s ∈ [0; t].

See e.g. section 5.3 of [BR89] for details. Because v′ and thus F is locally Lipschitz continuous,
for every pair ω0 = z, ω̇0 = v0 of initial conditions and every bounded region we find a unique
solution of the ODE at least up to the boundary of that region (see theorem 8 in section 6.9
of [BR89]).

There are two degrees of freedom in (5.3a) because we can choose ω̇0 and λ. In the follow-
ing we will show, that the two additional conditions (5.3b) and (5.3c) guarantee the existence
of a unique solution to the system (5.3).

The interpretation as the motion of a classical particle helps us to determine the behaviour
of the solutions. We can use conservation of energy: Because of

∂s
(1

2
ω̇2
s − λv(ωs)

)
= ω̇sω̈s − λv′(ωs)ω̇s = ω̇s

(
ω̈s − λv′(ωs)

) (5.3a)
= 0

we have
1
2
ω̇2
s − λv(ωs) =

1
2
ω̇2

0 − λv(ω0) =: E for all s ∈ [0; t]. (5.4)

This conservation law describes the speed for any point of the path: the speed of the path at
point ωs is

|ω̇s| =
√

2(E + λv(ωs)). (5.5)

Thus the rate function It can be expressed as a function of E and λ as follows.

It(ω) =
1
2

∫ t

0

ω̇2
s ds =

∫ t

0

E + λv(ωs) ds

= tE + 2λ, (5.6)

where λ and E are determined by equations (5.3b) and (5.3c).

Because of relation (5.4) we find, that whenever ω is a solution of (5.3a) we have E ≥
−λv(ωs) for all s ∈ [0; t] and the path can only stop and turn at points x with −λv(x) = E.
Let x ∈ R be such a point and assume v′(x) = 0. Then η with ηs = x for all s ≥ 0 is the
unique solution of (5.3a) with η0 = x and η̇0 = 0. Now assume that ωs = x for some s > 0.
Then (ωs−r)r∈[0;s] is also a solution of (5.3a) with start in x and initial speed 0, so we have
ωs−r = ηr = x for all r ∈ [0; s]. This shows that a point x 6= z with E = −λv(x) and v′(x) = 0
cannot be reached by a solution ω of (5.3a). Thus whenever a non-constant path reaches an
x ∈ R with E = −λv(x) then we have ω̈s = λv′(ωs) 6= 0 and the path always changes direction
there. Figure 5.1 illustrates two different kinds of solution, one where ωs moves monotonically
and one where the path reaches a point b with −λv(b) = E and turns there.

Since the differential equation (5.3a) is autonomous and since a solution ω changes direc-
tion every time is reaches a point x with −λv(x) = E, the path can reach at most two distinct
points of these nature. In this case the solution oscillates between these points periodically.
Thus every solution of (5.3a) changes direction only a finite number of times before time t.

In order to find the path which minimises the rate function It we need to keep track of the
different possible traces of the path. For the remaining part of this section we use the following
notation. The path (ωs)0≤s≤t is said to have trace T = (x0, x1, . . . , xn) when ω0 = x0, ωt =
xn, and the path ω moves monotonically in either direction from xi−1 to xi for i = 1, . . . , n in
order and changes direction only at the points x1, . . . , xn−1. We use the abbreviation

|T | =
n∑
i=1

|xi − xi−1|
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Figure 5.1: This figure illustrates two types of solution for equation (5.3a). Here we only con-
sider the case λ > 0. The curved line is the graph of the function x 7→ −λv(x). The bold part
of the lines corresponds to the points visited by the path ω. The thick dots are

(
ω0,−λv(ω0)

)
and

(
ωt,−λv(ωt)

)
. Both solutions start at z ∈ K1, head towards a neighbourhood of the zero m,

and finally reach a point a ∈ K2. The left hand image shows a free solution, i.e. one with
E > 0, the right hand image shows a bound solution, i.e. one with E ≤ 0 where the path ω
turns at the point b with −λv(b) = E.

for the length of the trace and sometimes identify T with the set
⋃n
i=1[xi−1, xi] of covered

points to write minT , maxT , v|T , or infx∈T v(x). For positive functions f : R → R we use the
notation ∫

T

f(x) dx :=
n∑
i=1

∣∣∫ xi

xi−1

f(x) dx
∣∣.

The absolute values are taken to make the integral positive even when xi < xi−1. If a solu-
tion ω of (5.3a) has trace T = (x0, x1, . . . , xn), this then implies that v(x1) = · · · = v(xn−1) =
−E/λ and each of the x1, . . . , xn−1 is either minT or maxT . Between the points xi the path
is strictly monotonic, i.e. after the start in z it oscillates zero or more times between minT
and maxT before it reaches a at time t. Using this notation we can formulate the following
Lemma.

Lemma 5.6. Let λ,E ∈ R and a trace T = (x0, . . . , xn) be given. Then the following two
conditions are equivalent.

(j) The unique solution ω : [0; t]→ R of

ω̈s = λv′(ωs) for all s ∈ [0; t]

with initial conditions ω0 = z and ω̇0 = sgn(x1 − x0)
√

2(E + λv(0)) has trace T and
solves (5.3b) and (5.3c).

(ij) We have x0 = z, xn = a, E = −λv(xi) for i = 1, . . . , n − 1, as well as E > −λv(x) for
all minT < x < maxT , and the pair (λ,E) solves∫

T

v(x)√
E + λv(x)

dx =
√

8 (5.7a)

and ∫
T

1√
E + λv(x)

dx =
√

2t. (5.7b)

Proof. Assume the conditions from (j). Then ω is a solution of (5.3a), there are times
t0, t1, . . . , tn with ωti = xi for i = 0, . . . , n and between the times ti the process moves mono-
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tonically. For any integrable, positive function g : R→ R substitution using (5.5) yields∫ t

0

g(ωs) ds =
n∑
i=1

∫ ti

ti−1

g(ωs) ds

=
n∑
i=1

∫ xi

xi−1

g(x)
dx

sgn(xi − xi−1)
√

2(E + λv(x))

=
∫
T

g(x)√
2(E + λv(x))

dx. (5.8)

Applying (5.8) to the function g = v gives

1
(5.3b)

=
1
2

∫ t

0

v(ωs) ds
(5.8)
=

1√
8

∫
T

v(x)√
E + λv(x)

dx.

This is equation (5.7a). Applying (5.8) to the constant function g = 1 gives

t =
∫ t

0

1 ds
(5.8)
=

1√
2

∫ a

0

1√
E + λv(x)

dx,

which is equation (5.7b).
Now assume condition (ij). For i = 1, . . . , n define the function Fi by

Fi(x) =
1√
2

∣∣∫ x

xi−1

1√
E + λv(x)

dx
∣∣

for all x between xi−1 and xi. Then Fi is finite because of (5.7b), strictly monotonic (increas-
ing if xi > xi−1 and decreasing else), and has Fi(xi−1) = 0. Further define

tk =
k∑
i=1

Fi(xi).

Equation (5.7b) gives tn = t. Because the functions Fi are monotonic they have inverse func-
tions F−1

i and we can define ω : [0; t]→ R by

ω(s) = F−1
i (s− ti−1) for all s ∈ [ti−1, ti].

We will prove, that ω satisfies all the conditions from (j).
Because we have ti − ti−1 = Fi(xi) and thus F−1

i (ti − ti−1) = xi = F−1
i+1(ti − ti) the

function ω is well-defined on the connection points at times ti and is continuous. This also
shows ωti = xi for i = 0, 1, . . . , n and especially ω0 = x0 = z and ωt = xn = a.

Because the Fi are differentiable at all points x strictly between xi−1 and xi, the function
ω is differentiable on the intervals (ti−1; ti) with derivative

ω̇s =
1

F ′i (ωs)
= sgn(xi − xi−1)

√
2(E + λv(ωs)).

Because ω is continuous and the limits lims→ti ω̇s exist, we see that ω is even differentiable on
[0; t] with ω̇0 = sgn(x1 − x0)

√
2(E + λv(0)) and ω̇ti = 0 for i = 1, . . . , n− 1.

Using the same kind of argument again, we find

ω̈s =
sgn(xi − xi−1)

2
√

2(E − λv(ωs))
· 2λv′(ωs) · sgn(xi − xi−1)

√
2(E − λv(ωs)) = λv′(ωs),

first between the ti and then on the whole interval [0; t]. Thus ω really solves the differential
equation from (j).

Using the substitution

1
2

∫ t

0

v(ωs) ds =
1√
8

∫
T

v(x)√
E + λv(x)

dx

as in the first part, we also get back (5.3b) from (5.7a). (qed)
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Figure 5.2: This figure illustrates the domain HT of the functions f and g. The domain is un-
bounded in directions λ → ∞ and E → ∞. It is bounded from below by λ 7→ − infx∈T λv(x),
which is equal to −λ supx∈T v(x) for λ ≤ 0 and to −λ infx∈T v(x) for λ ≥ 0.

Now we have reduced the problem of minimising It(ω) for solutions ω of the system (5.3)
to the problem of minimising

It(E, λ) = tE + 2λ

for solutions (E, λ) of the system (5.7).
For a trace T define

HT =
{

(E, λ)
∣∣ E ≥ − inf

x∈T
λv(x)

}
⊆ R2

and furthermore define the functions f, g : Ht → [0;∞] by

f(E, λ) =
∫
T

1√
E + λv(x)

dx

and
g(E, λ) =

∫
T

v(x)√
E + λv(x)

dx.

Figure 5.2 illustrates the domain HT . Both functions are finite in the interior of the domain,
but can be infinite at the boundary. The equations (5.7) are equivalent to f(Eλ, λ) =

√
2t and

g(E, λ) =
√

8. For paths which change direction at some point we will find solutions (E, λ)
of (5.7), which lay on the boundary of HT . For paths which go straight from z to a we will
find solutions (E, λ) in the interior of HT .

Lemma 5.7. Let t > 0 and T be a trace from z ∈ R to a ∈ R such that v|T is not
constant. Then there is at most one solution (E, λ) of (5.7).

Proof. For E > − infx∈T λv(x) we can choose an E∗ between − infx∈T λv(x) and E.
Then v(x)/(E∗ + λv(x))3/2 is an integrable upper bound of v(x)/(e + λv(x))3/2 for all e in a
(E − E∗)-Neighbourhood of E. So we can use the theorem about interchanging the Lebesgue-
integral with derivatives to get

∂

∂E
g(E, λ) = −1

2

∫
T

v(x)(
E + λv(x)

)3/2 dx < 0.

So for every λ the map E 7→ g(E, λ) is strictly decreasing and there can be at most one Eλ
with g

(
Eλ, λ

)
=
√

8.
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With the help of the implicit function theorem we can calculate the derivative of Eλ.
Interchanging the integral with the derivative as above we get

∂

∂λ
Eλ = −

∂
∂λg(Eλ, λ)
∂
∂E g(Eλ, λ)

= −
(− 1

2 )
∫
T
v2(x)

(
Eλ + λv(x)

)−3/2
dx

(− 1
2 )
∫
T
v(x)

(
Eλ + λv(x)

)−3/2
dx

= −
∫
T
v2(x) dµ(x)∫

T
v(x) dµ(x)

where µ is the probability measure, with density

dµ

dx
=

1
Z

(
Eλ + λv(x)

)−3/2

and the normalisation constant is

Z =
∫
T

(
Eλ + λv(y)

)−3/2
dy.

Furthermore for (E, λ) ∈ (HT )◦ we have

∂

∂E
f(E, λ) = −1

2

∫
T

(
E + λv(x)

)−3/2
dx = −Z

2

and thus

∂

∂λ

(
f(Eλ, λ)

)
=
∂f

∂E
(Eλ, λ) · ∂

∂λ
Eλ +

∂f

∂λ
(Eλ, λ)

=
Z

2
·
∫
T
v2(x) dµ(x)∫

T
v(x) dµ(x)

− Z

2

∫
T

v(x) dµ(x)

=
Z

2
·
∫
T
v2(x) dµ(x)−

(∫
T
v(x) dµ(x)

)2∫
T
v(x) dµ(x)

≥ 0.

Equality would only hold for the case of constant v|T . So the map λ 7→ f(Eλ, λ) is strictly
increasing and there can be at most one λ with f

(
Eλ, λ

)
=
√

2t. This finishes the proof.
(qed)

Lemma 5.8. Let T a trace with m ∈ T and t ≥ 2|T |/
∫
T
v(x) dx. Then equation (5.7) has

a solution (E, λ) with with E, λ > 0.

Proof. Define λ∗ = (
∫
T

√
v(x) dx)2/8 and assume 0 < λ ≤ λ∗. Then we have

g(0, λ) =
∫
T

v(x)√
λv(x)

dx =
1√
λ

∫
T

√
v(x) dx ≥

√
8.

and the dominated convergence theorem gives

lim
E→∞

g(E, λ) = 0.

Thus for all 0 < λ ≤ λ∗ there exists an Eλ ≥ 0 with g(Eλ, λ) =
√

8.
Because of g(0, λ∗) =

√
8 we have Eλ∗ = 0. Fatou’s lemma then gives

lim inf
λ↑λ∗

f(Eλ, λ) ≥
∫
T

1√
λ∗v(x)

dx.
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Because v is positive and v(m) = 0 we have v′(m) = 0 and v′′(m) ≥ 0. Then by Taylor’s
theorem there exists a c > 0 and a closed interval I ⊆ R with m ∈ I ⊆ T , such that
v(x) ≤ c2(x−m)2 for all x ∈ I. Therefore we find∫

T

1√
v(x)

dx ≥
∫
I

1√
c2(x−m)2

dx =
∫
I

1
c|x−m|

dx = +∞

and thus λ 7→ f(Eλ, λ) is a continuous function with

lim
λ↑λ∗

f(Eλ, λ) = +∞.

On the other hand because of g(E0, 0) =
√

8 we have E0 = (
∫
T
v(x) dx)2/8. So for λ = 0 we

get

f(E0, 0) =
∫
T

1√
E0

dx =
√

8∫
T
v(x) dx

|T |.

Together this shows, that for all

t ≥ 2|T |∫
T
v(x) dx

there exists a solution (Eλ, λ) with f(Eλ, λ) =
√

2t. (qed)

Lemma 5.9. There are numbers ε, c1, c2 > 0, such that the following holds: For every
trace T starting in K1, ending in K2, and visiting the ball Bε(m) there is a non-empty,
closed interval A ⊆ R, such that A ⊆ T , |A| = ε and we have c1 ≤ v(x) ≤ c2 for every x ∈ A.

Proof. Because m /∈ K1∩K2 either K1 or K2 has a positive distance from m. Let ε be one
third of this distance. Define A′ = {x ∈ R | ε ≤ |x−m| ≤ 2ε } and let c1 = inf{ v(x) | x ∈ A′}
and c2 = sup{ v(x) | x ∈ A′}.

Each trace starting in K1, ending in K2, and visiting the ball Bε(m) either crosses [m −
2ε;m − ε] or [m + ε;m + 2ε]. Let A be the crossed interval. Then clearly |A| = ε and and
because of A ⊆ A′ the estimates for v on A hold. (qed)

Lemma 5.10. For every η > 0 there is a t1 > 0, such that whenever t ≥ t1, T is a trace
from z ∈ K1 to a ∈ K2 with m ∈ [z; a], and (E, λ) solves (5.7), then we have∣∣∣It(E, λ)− 1

4

(∫
T

√
v(x) dx

)2∣∣∣ ≤ η.
Proof. This case is illustrated in the left hand image of figure 5.1. Because m ∈ [z; a] any

path from z to a must visit m and thus we find E > −λv(m) = 0. Thus the only possible trace
in this case is T = (z, a), because the process could only turn at points x where −λv(x) = E.

Now let η > 0. Define L = sup
{
|a− z|

∣∣ z ∈ K1, a ∈ K2

}
. Then we get

√
2t =

∫
T

1√
E + λv(x)

dx ≤
∫ a

z

1√
E
dx ≤ L√

E

and thus

E ≤ L2

2t2
.

So we can find a t1 > 0 with
E · t < η (5.9)

whenever t ≥ t1.
Choosing A, c1, and c2 as in lemma 5.9 we get

√
8 =

∫
T

v(x)√
E + λv(x)

dx ≥
∫
A

c1√
E + λc2

dx =
c1|A|√
E + λc2
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and thus

λ ≥ c21|A|2 − E
8c2

≥ c21|A|2 − L2/2t2

8c2
.

So we can choose a small c3 > 0 and increase t1 to achieve λ > c3 whenever t ≥ t1.
Because of

lim
E↓0

∫ a

0

v(x)√
E + v(x)

dx =
∫ a

0

√
v(x) dx

we can find a c4 > 0 with∫ a

0

v(x)√
E + v(x)

dx ≥
√

1− η/J(z, a)
∫ a

0

√
v(x) dx

for all E < c4. Increase t1 until
L2

2t2c3
< c4

and thus

√
8 =

∫ a

0

v(x)√
E + λv(x)

dx

≥ 1√
λ

∫ a

0

v(x)√
L2/2t2λ+ v(x)

dx

≥ 1√
λ

∫ a

0

v(x)√
c4 + v(x)

dx

≥ 1√
λ

√
1− η/J(z, a)

∫ a

0

√
v(x) dx

for all t ≥ t1. Solving this for λ we get

2λ ≥ (1− η/J(z, a))J(z, a) = J(z, a)− η. (5.10)

Because E is positive we also find

√
8 =

∫ a

0

v(x)√
E + λv(x)

dx ≤ 1√
λ

∫ a

0

√
v(x) dx

and thus
2λ ≤ J(z, a). (5.11)

For the rate function It equation (5.10) gives

It(E, λ) = E · t+ 2λ ≥ J(z, a)− η

and equations (5.9) and (5.11) give

It(E, λ) = E · t+ 2λ ≤ J(z, a) + η

for all t > t1. (qed)

Lemma 5.11. For every η > 0 there is a t2 > 0, such that whenever t ≥ t2, T is a trace
from z ∈ K1 to a ∈ K2 with m /∈ [z; a], and (E, λ) solves (5.7), then we have∣∣∣It(E, λ)− 1

4

(∫
T

√
v(x) dx

)2∣∣∣ ≤ η.
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Proof. This case is illustrated in the right hand image of figure 5.1. Because the path
has to change direction we will have E < 0 in this case. Without loss of generality we can
assume that m < a, z. We call a value b ∈ R admissible if it lies in the interval (m; min(a, z))
and if additionally v(x) > v(b) for all x > b holds. For admissible values b consider the trace
T = (z, b, a) and define

hz,a(b) = 2

∫
(z,b,a)

1√
v(x)−v(b)

dx∫
(z,b,a)

v(x)√
v(x)−v(b)

dx
.

Using Taylor approximation as in lemma 5.8, one sees that for b→ m the numerator converges
to +∞ and by dominated convergence the denominator converges to

∫
(0,m,a)

√
v(x) dx. So h is

a continuous function with hz,a(b)→∞ for b→ m.
Let ε, c1, and c2 and A be as in lemma 5.9. We would like to find a b ∈ Bε(m) with

hz,a(b) = t, so we need an upper bound on

inf
b∈(m;m+ε)

ha,z(b) (5.12)

which is uniform in a and z. We find

hz,a(b) ≤ 2
supz∈K1,a∈K2

∫
(z,b,a)

1√
v(x)−v(b)

dx∫
A

c1√
c2
dx

. (5.13)

Because v′′(m) > 0 and lim inf |x|→∞ v(x) > 0 we can decrease ε to ensure that v′(x) ≥
v′′(m)(x −m)/2 for all x ∈ [m;m + ε] and v(x) ≥ v(m + ε) for all x ≥ m + ε. Using Taylor’s
theorem again we get

v(x)− v(b) = v′(ξ)(x− b) ≥ v′′(m)(b−m)
2

(x− b)

for some ξ ∈ [b;x] for all x ∈ [m;m+ ε]. Thus we can conclude∫
(z,b,a)

1√
v(x)− v(b)

dx

≤ 2
∫ m+ε

b

1√
v′′(m)(b−m)

2 (x− b)
dx

+
∫ z

m+ε

1√
v(m+ ε)− v(b)

dx+
∫ a

m+ε

1√
v(m+ ε)− v(b)

dx

≤ 2

√
2

v′′(m)(b−m)
·
√
m+ ε− b

+ 2
1√

v(m+ ε)− v(b)
sup
{
|x−m|

∣∣ x ∈ K1 ∪K2

}
.

(5.14)

The right hand side of (5.14) is independent of a and z. So we can take the infimum over all
b ∈ (m;m+ ε) and use (5.13) to get the uniform upper bound on (5.12). Call this bound t2.

Now let t > t2. Then for every z ∈ K1 and a ∈ K2 we can find a b ∈ (m;m + ε) with
hz,a(b) = t. Further define λ > 0 by

√
λ =

1√
8

∫
(z,b,a)

v(x)√
v(x)− v(b)

dx

and E by
E = −λv(b).
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Then for the trace T = (z, b, a) these values E and λ solve

E + λv(b) = 0,∫
(z,b,a)

v(x)√
E + λv(x)

dx =
1√
λ

∫
(z,b,a)

v(x)√
v(x)− v(b)

dx =
√

8

and ∫
(z,b,a)

1√
E + λv(x)

dx =
1√
λ

∫
(z,b,a)

1√
v(x)− v(b)

dx =
√

2t.

For t→∞ we have b→ m uniformly in a and z,

λ→ 1
8

(∫
(z,m,a)

v(x)√
v(x)− v(m)

dx
)2

=
1
8

(∫
(z,m,a)

√
v(x) dx

)2

,

and again E → 0 (this time from below). This gives

It(E, λ) =
1
2

∫
T

√
2(E + λv(x)) dx→ 1

4

(∫
(z,m,a)

√
v(x) dx

)2

which proves the lemma. (qed)

With all these preparations in place we are now ready to calculate the asymptotic lower
bound from lemma 5.1.

Proof (of lemma 5.1). Because of lemma 5.5 we can restrict ourselves to the case β = 1,
i.e. we have to prove

lim
t→∞

inf
{
It(ω)

∣∣ ω ∈Ma,z,1
t

}
= J(a, z)

locally uniformly in a, z ∈ R.
Let K1,K2 ⊆ R be compact with 0 /∈ K1 ∩ K2 and η > 0. Furthermore let z ∈ K1 and

a ∈ K2.
Assume first the case m ∈ [z; a]. From lemma 5.10 we get a t0 > 0, such that for every t >

t0 there exists a solution (E, λ) of (5.7) for the trace T = (z, a) with
∣∣It(E, λ) − J(a, z)

∣∣ ≤ η.
This t0 only depends on K1 and K2, but not on z and a.

Now assume the case m /∈ [z; a]. From lemma 5.11 we again get a t0 > 0, such that for
every t > t0 there exists a solution (E, λ) of (5.7) for a trace T = (z, x1, a) with

∣∣It(E, λ) −
J(a, z)

∣∣ ≤ η and t0 only depends on K1 and K2, but not on z and a.
In either case we can use lemma 5.6 to conclude, that there exists an ω, which solves

(5.3a), (5.3b), and (5.3c). Because of (5.6) this path has∣∣It(ω)− J(a, z)
∣∣ ≤ η.

Let c = inf
{
It(ω)

∣∣ ω ∈ Ma,z,1
t

}
. Because the path ω constructed just now is both, in

Ma,z,1
t and absolutely continuous, we have c < ∞. Let Mn = Ma,z,1

t ∩ {ω | It(ω) < c + 1/n }.
Because Ma,z,1

t is closed and It is a good rate function, the sets Mn are compact, non-empty,
and satisfy Mn ⊇ Mn+1 for every n ∈ N. So the intersection M =

⋂
n∈NMn is again non-

empty. Because every ω̃ ∈ M has It(ω̃) = c, we see, that there in fact exists a path ω̃ for
which the infimum is attained. From the Euler-Lagrange method we know, that ω̃ also solves
equations (5.3a), (5.3b), and (5.3c). From lemmas 5.6 and 5.7 we know, that the solution is
unique, so ω̃ must coincide with our path ω constructed above and we get∣∣∣inf

{
It(ω)

∣∣ ω ∈Ma,z,1
t

}
− J(a, z)

∣∣∣ ≤ η
for all z ∈ K1, a ∈ K2 and t ≥ t0. Since η > 0 was arbitrary this completes the proof. (qed)
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5.2 Staying Near the Equilibrium

In this section we want to study the event that for some drift function b : R → R the integral
1
2

∫ t
0
b2(Bs) ds is small. In contrast to the previous section here we are considering long time

intervals, but have no conditions on the final point.
The proof uses Taylor approximation around the zeros of b to reduce the problem to the

case of linear b which was already studied in Corollary 4.3. In order to make the Taylor ap-
proximation work we have need upper bounds on the probability that the process leaves a
neighbourhood of the zero of b. This is given by the following lemma.

Lemma 5.12. Let B be a Brownian motion, a, t > 0, and v : R → R be a function with
v(x) ≥ x2 ∧ a2 for every x ∈ R. Then we have

lim sup
ε↓0

ε log sup
x∈R

Px

(∫ t

0

v(Bs) ds ≤ ε, sup
0≤s≤t

|Bs| > a
)
≤ −1

8

(
t+

1
2
a2
)2

.

In the following lemmas we will only need the fact that the lim sup from the lemma is
strictly smaller than −t2/8. At a first glance it seems clear that this is true: because we are
considering small values of ε, the event {

∫ t
0
v(Bs) ds ≤ ε} forces the process to spend most of

the time near 0 and so the event should typically occur together with {sup0≤s≤t |Bs| ≤ a} but
not with {sup0≤s≤t |Bs| > a}. So recalling corollary 4.3 one would guess that that

lim sup
ε↓0

ε logP
(∫ t

0

v(Bs) ds ≤ ε
)

= lim sup
ε↓0

ε logP
(∫ t

0

v(Bs) ds ≤ ε, sup
0≤s≤t

|Bs| ≤ a
)

≤ lim sup
ε↓0

ε logP
(∫ t

0

B2
s ds ≤ ε

)
= −1

8
t2

and that the condition sup0≤s≤t |Bs| > a will cause an additional cost which makes this rate
smaller than −t2/8. Converting this idea into a formal proof turns out to be cumbersome and
we defer the proof to the end of this section.

A first consequence of lemma 5.12 is the following statement.

Lemma 5.13. For every a > 0 and every x ∈ (−a/
√

2; +a/
√

2) we have

lim
ε↓0

ε logPx
(∫ t

0

B2
s ds ≤ ε, sup

0≤s≤t
|Bs| ≤ a

)
= lim

ε↓0
ε logPx

(∫ t

0

B2
s ds ≤ ε

)
= −

(
t+ x2

)2
8

.

Proof. The second equality is proved in corollary 4.3. Applying lemma 5.12 to the func-
tion v(x) = x2 we see that

lim sup
ε↓0

ε logPx
(∫ t

0

B2
s ds ≤ ε, sup

0≤s≤t
|Bs| > a

)
≤ −1

8

(
t+

1
2
a2
)2

< lim inf
ε↓0

ε logPx
(∫ t

0

B2
s ds ≤ ε

)
.

Thus we can use lemma 2.3 to prove the first equality. (qed)
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When proving estimates about probabilities like the ones in lemma 5.13 coupling argu-
ments are a useful tool. The technique is based on the following lemma.

Lemma 5.14. Given x, y ∈ R with |x| ≥ |y| we can choose two Brownian motions Bx
and By with Bx0 = x, By0 = y, and |Bxt | ≥ |B

y
t | for all t ≥ 0.

Proof. Let Bx be any Brownian motion with start in x and B be another one with start
in y. Define the stopping time T by

T = inf
{
t ≥ 0

∣∣ |Bxt | = |Bt|}
and the random variable σ by σ = 1 if BxT = BT and σ = −1 else. Then the process By
defined by

Byt =

{
Bt if t ≤ T , and
BT + σ(Bxt −BxT ) if t > T

is a Brownian motion with |Byt | < |Bxt | for t < T and either Byt = Bxt or Byt = −Bxt for t ≥ T .
This proves the claim. (qed)

The main result of this section is the following generalisation of lemma 5.13.

Proposition 5.15. Let b : R→ R be a differentiable function with b(0) = 0, b′(0) 6= 0 and
lim inf |x|→∞ |b(x)| > 0. Then for every η > 0 we have

lim
ε↓0

ε · logP
(1

2

∫ t

0

b2(Bs) ds ≤ ε, sup
0≤s≤t

|Bs| ≤ η
)

= lim
ε↓0

ε · logP
(1

2

∫ t

0

b2(Bs) ds ≤ ε
)

= − |b
′(0)|2t2

16
.

Proof. Choose some 0 < δ < |b′(0)|. Using the Taylor formula b(x) = b′(0) · x + o(x) we
find an a > 0 with(

|b′(0)|+ δ
)2
x2 ≥ b2(x) ≥

(
|b′(0)| − δ

)2
x2 for all x ∈ [−a; a]. (5.15)

Without loss of generality we may assume that a is smaller than η and also small enough to
permit |b(x)| ≥ a

(
|b′(0)| − δ

)
for all x ∈ R with |x| > a.

We have to calculate the exponential rates of

P
(1

2

∫ t

0

b2(Bs) ds ≤ ε
)

= P
(1

2

∫ t

0

b2(Bs) ds ≤ ε, sup
0≤s≤t

|Bs| ≤ a
)

+ P
(1

2

∫ t

0

b2(Bs) ds ≤ ε, sup
0≤s≤t

|Bs| > a
)
.

(5.16)

Whenever sup0≤s≤t |Bs| ≤ a we can approximate b(x) by b′(0)x as in (5.15). This gives

P
(1

2

∫ t

0

(
|b′(0)|+ δ

)2
B2
s ds ≤ ε, sup

0≤s≤t
|Bs| ≤ a

)
≤ P

(1
2

∫ t

0

b2(Bs) ds ≤ ε, sup
0≤s≤t

|Bs| ≤ a
)

≤ P
(1

2

∫ t

0

(
|b′(0)| − δ

)2
B2
s ds ≤ ε, sup

0≤s≤t
|Bs| ≤ a

)
.

Both bounds of this estimate can be handled using

lim
ε↓0

ε logP
(∫ t

0

cB2
s ds ≤ ε, sup

0≤s≤t
|Bs| ≤ a

)
= −c · t

2

8
,
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which is a consequence of lemma 5.13 and the scaling property 4.2.
For the lower bound this gives

lim inf
ε↓0

ε logP
(1

2

∫ t

0

b2(Bs) ds ≤ ε
)

≥ lim inf
ε↓0

ε logP
(1

2

∫ t

0

b2(Bs) ds ≤ ε, sup
0≤s≤t

|Bs| ≤ a
)

≥ −
(
|b′(0)|+ δ

)2
16

t2

whenever δ > 0. For the upper bound we find

lim sup
ε↓0

ε logP
(1

2

∫ t

0

b2(Bs) ds ≤ ε, sup
0≤s≤t

|Bs| ≤ a
)
≤ −

(
|b′(0)| − δ

)2
16

t2. (5.17)

Define v(x) = b2(x)/
(
|b′(0)| − δ

)2. Then by our choice of a we have v(x) ≥ x2 ∧ a2 and
lemma 5.12 together with 4.2 gives

lim sup
ε↓0

ε logP
(1

2

∫ t

0

b2(Bs) ds ≤ ε, sup
0≤s≤t

|Bs| > η
)

≤ lim sup
ε↓0

ε logP
(1

2

∫ t

0

b2(Bs) ds ≤ ε, sup
0≤s≤t

|Bs| > a
)

≤ −1
8
(
t+

1
2
a2
)2 (|b′(0)| − δ

)2
2

< −
(
|b′(0)| − δ

)2
16

t2.

(5.18)

Using only the last three lines of equation (5.18) we see that the upper bound for (5.16) is
dominated by (5.17) and using lemma 2.3 we get

lim sup
ε↓0

ε logP
(1

2

∫ t

0

b2(Bs) ds ≤ ε
)
≤ −

(
|b′(0)| − δ

)2
16

t2

for all δ > 0. Letting δ ↓ 0 finishes the proof of

lim
ε↓0

ε · logP
(1

2

∫ t

0

b2(Bs) ds ≤ ε
)

= − |b
′(0)|2t2

16
.

Using lemma 2.3 again, but this time with the full equation (5.18) also proves the first
equality of the proposition’s claim. (qed)

Using a coupling argument we can get the following refinement of proposition 5.15.

Lemma 5.16. Let b : R → R be a differentiable function with b(0) = 0, b′(0) 6= 0 and
lim inf |x|→∞ |b(x)| > 0. Then for every η > 0 we have

lim
ζ↓0

lim inf
ε↓0

ε · log inf
−ζ<z<ζ

Pz

(1
2

∫ t

0

b2(Bs) ds ≤ ε, sup
0≤s≤t

|Bs| ≤ η
)

= − |b
′(0)|2t2

16
and

lim sup
ε↓0

ε · log sup
y∈R

Py

(1
2

∫ t

0

b2(Bs) ds ≤ ε, sup
0≤s≤t

|Bs| ≤ η
)

= − |b
′(0)|2t2

16
.
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Proof. We start by proving the claim about the lim inf. Using proposition 5.15 we find

lim inf
ε↓0

ε · log inf
−ζ<z<ζ

Pz

(1
2

∫ t

0

b2(Bs) ds ≤ ε, sup
0≤s≤t

|Bs| ≤ η
)

≤ lim
ε↓0

ε · logP0

(1
2

∫ t

0

b2(Bs) ds ≤ ε, sup
0≤s≤t

|Bs| ≤ η
)

= − |b
′(0)|2t2

16

for every ζ > 0.
Now let κ > 0 and choose a δ > 0 with

−
(
|b′(0)|+ δ

)2 (t+ δ2)2

16
> − |b

′(0)|2t2

16
− κ.

As in the proof of proposition 5.15 we can use Taylor approximation to find an a > 0 with

b2(x) ≤
(
|b′(0)|+ δ

)2
x2

for all x ∈ [−a; a]. Without loss of generality we may assume a ≤ min(2δ, η).
Let ζ < a/2 and z ∈ [−ζ; +ζ]. Then we can use lemma 5.14 to choose two Brownian

motions Bζ and Bz with Bζ0 = ζ, Bz0 = z, and |Bζt | ≥ |Bzt | for all t ≥ 0. We find

P
(1

2

∫ t

0

b2(Bzs ) ds ≤ ε, sup
0≤s≤t

|Bzs | ≤ η
)

≥ P
(1

2

∫ t

0

b2(Bzs ) ds ≤ ε, sup
0≤s≤t

|Bzs | ≤ a
)

≥ P
(1

2

∫ t

0

(
|b′(0)|+ δ

)2(Bzs )2 ds ≤ ε, sup
0≤s≤t

|Bzs | ≤ a
)

≥ P
(1

2

∫ t

0

(
|b′(0)|+ δ

)2(Bζs )2 ds ≤ ε, sup
0≤s≤t

|Bζs | ≤ a
)

for every z ∈ [−ζ; +ζ], and thus

lim inf
ε↓0

ε · log inf
−ζ<z<ζ

Pz

(1
2

∫ t

0

b2(Bs) ds ≤ ε, sup
0≤s≤t

|Bs| ≤ η
)

≥ lim inf
ε↓0

ε · logPζ
(1

2

∫ t

0

(
|b′(0)|+ δ

)2
B2
s ds ≤ ε, sup

0≤s≤t
|Bs| ≤ a

)
=

1
2
(
|b′(0)|+ δ

)2 lim inf
ε↓0

ε · logPζ
(∫ t

0

B2
s ds ≤ ε, sup

0≤s≤t
|Bs| ≤ a

)
.

Because ζ < a/2 < δ we can use lemma 5.13 to get

lim inf
ε↓0

ε · log inf
−ζ<z<ζ

Pz

(1
2

∫ t

0

b2(Bs) ds ≤ ε, sup
0≤s≤t

|Bs| ≤ η
)

≥ −1
2
(
|b′(0)|+ δ

)2 (t+ ζ2)2

8

≥ −1
2
(
|b′(0)|+ δ

)2 (t+ δ2)2

8

> − |b
′(0)|2t2

16
− κ

for all sufficiently small κ > 0. Letting ζ ↓ 0 completes the proof of the first claim.
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For the second claim first note that

lim sup
ε↓0

ε · log sup
y∈R

Py

(1
2

∫ t

0

b2(Bs) ds ≤ ε, sup
0≤s≤t

|Bs| ≤ η
)

≥ lim sup
ε↓0

ε · logP0

(1
2

∫ t

0

b2(Bs) ds ≤ ε, sup
0≤s≤t

|Bs| ≤ η
)

= − |b
′(0)|2t2

16
,

again by proposition 5.15.
Let κ > 0 and choose δ > 0 with

−
(
|b′(0)| − δ

)2 t2
16

< − |b
′(0)|2t2

16
+ κ.

Using Taylor approximation we can find an a > 0 with

b2(x) ≥
(
|b′(0)| − δ

)2
x2

for all x ∈ [−a; a] and by choosing a small enough we can find a smooth, monotone function
ϕ : R→ R with |b(x)| > |ϕ(x)| for all x ∈ R and ϕ′(0) = |b′(0)| − δ.

Using the coupling argument and proposition 5.15 again, we get

lim sup
ε↓0

ε · log sup
y∈R

Py

(1
2

∫ t

0

b2(Bs) ds ≤ ε, sup
0≤s≤t

|Bs| ≤ η
)

≤ lim sup
ε↓0

ε · log sup
y∈R

Py

(1
2

∫ t

0

ϕ2(Bs) ds ≤ ε, sup
0≤s≤t

|Bs| ≤ η
)

≤ lim sup
ε↓0

ε · logP0

(1
2

∫ t

0

ϕ2(Bs) ds ≤ ε, sup
0≤s≤t

|Bs| ≤ η
)

= −

(
|b′(0)| − δ

)2

t2

16

< − |b
′(0)|2t2

16
+ κ

for all κ > 0. Taking the limit κ ↓ 0 completes the proof. (qed)

Everything left to do now, is to add the proof of lemma 5.12.

Proof (of lemma 5.12). We need to find an upper bound on the exponential rate for the
probability of the event

Aε =
{∫ t

0

v(Bs) ds ≤ ε, sup
0≤s<t

|Bs| > a
}
,

which is uniform in the initial point B0 = x. First define two interlaced sequences of stopping
times (Sj)j∈N and (Tj)j∈N0 by letting T0 = 0 and

Sj = inf
{
s > Tj−1

∣∣ |Bs| ≥ a}
Tj = inf

{
s > Sj

∣∣ |Bs| = a/2
}

for all j ∈ N. If the initial point B0 = x has |x| > a we have S0 = 0 and |BS0 | > a. Except for
this we have |BSj | = a. For s ∈ [Sj ;Tj ] we have |Bs| ≥ a/2 and thus v(Bs) ≥ a2/4. Outside
these intervals we have |Bs| < a and thus v(Bs) ≥ B2

s . Therefore we can conclude{∫ Tj

Sj

v(Bs) ds ≤ ε
}
⊆
{∫ Tj

Sj

a2/4 ds ≤ ε
}

=
{
Tj − Sj ≤ 4ε/a2

}
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Figure 5.3: Five paths of a Brownian motion on the interval [0; 1], conditioned on the event that∫ 1

0
B2
s ds ≤ 0.05 and that we have sup0≤s≤1Bs > 1. One can see that the typical path under

these conditions reaches its maximum near the end of the interval. This behaviour fits well with
the special rôle of the endpoint in formula (4.3).

and for d > 0 also{∫ Sj

Tj−1

v(Bs) ds ≤ ε, Sj − Tj−1 ≥ d
}
⊆
{∫ Sj

Tj−1

B2
s ds ≤ ε, Sj − Tj−1 ≥ d

}
⊆
{∫ Tj−1+d

Tj−1

B2
s ds ≤ ε

}
.

As an abbreviation define J = d2t/a2e+ 1. We want to split the set Aε into the two parts

Aε =
(
Aε ∩ {TJ ≤ t}

)
∪
(
Aε ∩ {TJ > t}

)
.

The first part corresponds to the case that there are at least J excursions up to the level
|Bs| = a and then back to |Bs| = a/2 before time t. For this case we will get an upper
bound on the probability from the fact that the process has to move very fast during the
intervals [Sj ;Tj ]. The second part corresponds to the case that there is at least one but that
there are at most J − 1 such excursions. This case is more difficult, because we have to take
the intervals between the excursions into account.

First consider the case TJ ≤ t. Here we have

Aε ∩ {TJ ≤ t} ⊆
{ J∑
j=1

∫ Tj

Sj

v(Bs) ds ≤ ε
}
⊆
{ J∑
j=1

(Tj − Sj) ≤ 4ε/a2
}
.

Using the strong Markov property for Brownian motion and the reflection principle we find

Px
(
Tj − Sj ≤ ε

)
≤ P

(
sup

0≤s≤ε
Bs > a/2

)
= 2P

(
Bε > a/2

)
= 2P

(√
εB1 > a/2

)
for all x ∈ R. The basic large deviation result for the standard normal distribution on R
(corollary 2.12) now gives

lim
ε↓0

ε · log sup
x∈R

Px
(
Tj − Sj ≤ ε

)
≤ −1

2
(
a/2
)2 = −a

2

8
.
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In this situation we can apply proposition 2.7 to get

lim sup
ε↓0

ε log sup
x∈R

Px
(
Aε ∩ {TJ ≤ t}

)
≤ lim sup

ε↓0
ε logPx

( J∑
j=1

(Tj − Sj) ≤ 4ε/a2
)

=
a2

4
lim sup
ε↓0

ε logPx
( J∑
j=1

(Tj − Sj) ≤ ε
)

≤ −a
2

4

( J∑
j=1

a√
8

)2

≤ −1
8
(
t+

1
2
a2
)2
.

(5.19)

Now consider the case TJ > t. Choose n ∈ N with n > 2J and ε > 0 with 4ε/a2 < t/n.
Define ∆t = t/n, the intervals I1 = [0; ∆t] and Ik =

(
(k − 1)∆t; k∆t

]
for k = 2, . . . , n, the

index set
Q =

{
(k1, . . . , k`) ∈ N`

∣∣∣ ` ∈ {1, . . . , J}, 1 ≤ k1 ≤ · · · ≤ k` ≤ n
}
,

and the event
Aε(k1,...,k`) = Aε ∩

{
Sj ∈ Ikj for j = 1, . . . , ` and S`+1 > t

}
.

Then we have
Aε ∩ {TJ > t} =

⋃
q∈Q

Aεq.

Choose (k1, . . . , k`) ∈ Q. As we have seen above the condition
∫ Tj
Sj
v(Bs) ds ≤ ε implies

Tj − Sj ≤ 4ε/a2 ≤ ∆t. Thus on Aεq we have

Sj − Tj−1 ≥ max
(
(kj − kj−1 − 2)∆t, 0

)
=: dj−1 (5.20)

for j = 1, . . . , ` − 1, where we use the convention k0 = 0. If k` < n then we use 5.20 also for
j = ` and we have

t− T` ≥ max
(
(n− k` − 2)∆t, 0

)
=: d`.

For k` = n it will turn out that we need to treat the right endpoint of the interval specially,
here we define d`−1 = max

(
(n− k`−1 − 3)∆t, 0

)
.

Let δ > 0 and define Dδ
2`+1 as in lemma 2.6. For α ∈ Dδ

2`+1 further define

Aαε(k1,...,k`)
=
{∫ S1

T0

v(Bs) ds ≤ α1ε,

∫ T1

S1

v(Bs) ds ≤ α2ε, S1 ∈ Ik1 ,

...∫ S`

T`−1

v(Bs) ds ≤ α2`−1ε,

∫ T`

S`

v(Bs) ds ≤ α2`ε, S` ∈ Ik` ,∫ t

T`

v(Bs) ds ≤ α2`+1ε, S`+1 > t
}

if k` < n and

Aαε(k1,...,k`)
=
{∫ S1

T0

v(Bs) ds ≤ α1ε,

∫ T1

S1

v(Bs) ds ≤ α2ε, S1 ∈ Ik1 ,

...∫ S`

T`−1

v(Bs) ds ≤ α2`−1ε, S` ∈ In, S`+1 > t
}
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else. Then we have
Aε ∩ {TJ > t} =

⋃
q∈Q

Aεq ⊆
⋃
q∈Q

⋃
α∈Dδ2`+1

Aαεq .

Assume first the case k` < n. Then we get

Px
(
Aαε(k1,...,k`)

)
≤ Px

(∫ T0+d0

T0

B2
s ds ≤ α1ε, T1 − S1 ≤ 4α2ε/a

2, S1 ∈ Ik1 ,

...∫ T`−1+d`−1

T`−1

B2
s ds ≤ α2`−1ε, T` − S` ≤ 4α2`ε/a

2, S` ∈ Ik` ,∫ T`+d`

T`

B2
s ds ≤ α2`+1ε, S`+1 > t

)
.

Now we use the strong Markov property of Brownian motion for the stopping times Sj and Tj .
Because |BTj | = a/2 and |BSj | = a are deterministic and the Brownian motion is symmetric
we get

Px
(
Aαε(k1,...,k`)

)
≤ Px

(∫ T0+d0

T0

B2
s ds ≤ α1ε, T1 − S1 ≤ 4α2ε/a

2, S1 ∈ Ik1 ,

...∫ T`−1+d`−1

T`−1

B2
s ds ≤ α2`−1ε, T` − S` ≤ 4α2`ε/a

2, S` ∈ Ik`
)

·P a
2

(∫ d`

0

B2
s ds ≤ α2`+1ε

)
≤ Px

(∫ T0+d0

T0

B2
s ds ≤ α1ε, T1 − S1 ≤ 4α2ε/a

2, S1 ∈ Ik1 ,

...∫ T`−1+d`−1

T`−1

B2
s ds ≤ α2`−1ε, S` ∈ Ik`

)
·P0

(
sup

0≤s≤4α2`ε/a2
Bs > a/2

)
·P a

2

(∫ d`

0

B2
s ds ≤ α2`+1ε

)
.

Repeating these two steps for j = `− 1, . . . , 0 finally gives

Px
(
Aαε(k1,...,k`)

)
≤ Px

(∫ d0

0

B2
s ds ≤ α1ε

)
·
∏̀
j=1

P a
2

(∫ dj

0

B2
s ds ≤ α2j+1ε

)

·
∏̀
j=1

P0

(
sup

0≤s≤4α2jε/a2
Bs > a/2

)
.

In order to use lemma 2.5 we have to calculate the individual rates for the factors on the
right-hand side. Using corollary 4.5 we get

lim
ε↓0

ε · log sup
x∈R

Px

(∫ d

0

B2
s ds ≤ ε

)
= −1

8
d2. (5.21)
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Using the reflection principle and the basic scaling property of Brownian motion we find

P0

(
sup

0≤s≤4ε/a2
Bs > a/2

)
= 2P

(
B4ε/a2 > a/2

)
= 2P

(√
4ε/a2B1 > a/2

)
= 2P

(√
εB1 > a2/4

)
.

The large deviation principle for the standard normal distribution on R (corollary 2.12) now
gives

lim
ε↓0

ε · logP0

(
sup

0≤s≤4ε/a2
Bs > a/2

)
= −1

2
(
a2/4

)2 = −1
8

(a2

2

)2

. (5.22)

Now we can apply lemma 2.5 to get the combined rate. The result is

lim
ε↓0

ε log sup
x∈R

Px
(
Aαε(k1,...,k`)

)
≤ − 1

1 + δ

1
8

(∑̀
j=0

dj + n1
a2

4
+ `

a2

2

)2

,

where n1 =
∣∣{j = 1, . . . , `

∣∣ dj > 0
}∣∣. Because each of the intervals [Sj ;Tj ] can have a non-

empty intersection with at most two of the n intervals Ik we have
∑`
j=0 dj ≥ n − 2J and thus

n1 ≥ 1. So we find

lim
ε↓0

ε log sup
x∈R

Px
(
Aαε(k1,...,k`)

)
≤ − 1

1 + δ

1
8

(n− 2J
n

t+
a2

4
+ `

a2

2

)2

(5.23)

for all α ∈ Dδ
2`+1 and all δ > 0.

Now assume k` = n. This case is similar, but needs an additional argument to take care of
the case t ∈ [S`;T`). Here we can no longer use (5.22) for the interval [S`;T`). To work around
this we define a stopping time R by

R = inf
{
s ≥ max(T`−1, (n− 2)∆t)

∣∣ |Bs| = a/2
}
.

Given the event Aαε(k1,...,k`)
the process cannot have |Bs| > a/2 for a period of time of length

∆t and using the special definition of d`−1 for this case we get T` − 1 + d`−1 ≤ R ≤ S`.
Similar to the other case we get then

Px
(
Aαε(k1,...,k`)

)
≤ Px

(∫ T0+d0

T0

B2
s ds ≤ α1ε, T1 − S1 ≤ 4α2ε/a

2, S1 ∈ Ik1 ,

...∫ T`−2+d`−2

T`−2

B2
s ds ≤ α2`−3ε,

T`−1 − S`−1 ≤ 4α2`−2ε/a
2, S`−1 ∈ Ik`−1 ,∫ T`−1+d`−1

T`−1

B2
s ds ≤ α2`−1ε, S` −R ≤ 4α2`ε/a

2, S` ∈ In
)
.

Using the strong Markov property for the stopping time R first gives

Px
(
Aαε(k1,...,k`)

)
≤ Px

(∫ T0+d0

T0

B2
s ds ≤ α1ε, T1 − S1 ≤ 4α2ε/a

2, S1 ∈ Ik1 ,

...∫ T`−2+d`−2

T`−2

B2
s ds ≤ α2`−3ε,

T`−1 − S`−1 ≤ 4α2`−2ε/a
2, S`−1 ∈ Ik`−1 ,∫ T`−1+d`−1

T`−1

B2
s ds ≤ α2`−1ε

)
·P0

(
sup

0≤s≤4α2`ε/a2
Bs > a/2

)
.
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Now we can continue splitting of terms as in the first case to get

Px
(
Aαε(k1,...,k`)

)
≤ Px

(∫ d0

0

B2
s ds ≤ α1ε

)
·
`−1∏
j=1

P a
2

(∫ dj

0

B2
s ds ≤ α2j+1ε

)

·
∏̀
j=1

P0

(
sup

0≤s≤4α2jε/a2
Bs > a/2

)
.

Using equations (5.21), (5.22) and lemma 2.5 as in the first case we get

lim
ε↓0

ε log sup
x∈R

Px
(
Aαε(k1,...,k`)

)
≤ − 1

1 + δ

(`−1∑
j=0

dj + n1
a2

4
+ `

a2

2

)2

≤ − 1
1 + δ

1
8

(n− 2J − 1
n

t+ `
a2

2

)2

(5.24)

for all α ∈ Dδ
2`+1 and all δ > 0. Note that in this case n1 = 0 is possible; this occurs in the

case ` = 1 and S1 ∈ In, because In was the interval we treated specially.

To estimate the upper exponential rate of Aε ∩ {TJ > t} with lemma 2.2 we need to
compare all the rates from 5.23 and 5.24. We get

lim sup
ε↓0

ε log sup
x∈R

Px
(
Aε ∩ {TJ > t}

)
= max

q∈Q
max

α∈Dδ2`+1

lim sup
ε↓0

ε logPx
(
Aαεq

)
≤ − 1

1 + δ

1
8

(n− 2J − 1
n

t+
a2

2

)2

for all δ > 0 and large enough n, where the largest bound came from the case ` = 1, k1 = n.
Letting first δ ↓ 0 and then n→∞ shows

lim sup
ε↓0

ε logPx
(
Aε ∩ {TJ > t}

)
≤ 1

8
(
t+

a2

2
)2
. (5.25)

Another application of lemma 2.2 gives the upper bound for P (Aε). Using the estim-
ates (5.19) and (5.25) we find

lim sup
ε↓0

ε log sup
x∈R

Px(Aε) ≤ 1
8
(
t+

a2

2
)2
.

This completes the proof of the lemma 5.12. (qed)
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5.3 The LDP for the Endpoint

In this section we use the results of the previous section to finally derive the LDP for the
endpoint Xϑ

t of the solution of

dXϑ
s = ϑb(Xs) � ds+ dBs on [0; t]

Xϑ
0 = z ∈ R

(5.26)

for ϑ→∞. The main result is theorem 5.19 at the end of this section.
We assume b = −Φ′ for a C2-function Φ: R→ R with bounded second derivative Φ′′. Then

the drift b is Lipschitz continuous and the SDE (5.26) has a unique solution Xϑ.

Notation: To avoid complicated and hard to read expressions in small print we sometimes
write (A) for the indicator function of the event A during this section.

Lemma 5.17. Let Φ: R → R be a C2 function with bounded Φ′′ and let b = −Φ′.
Assume there is an m ∈ R with b(x) = 0 if and only if x = m and lim inf |x|→∞ |b(x)| > 0.
Further assume that there is a rate function I : R→ [0;∞] with

lim inf
ϑ→∞

1
ϑ

logE
(
exp(−ϑ

2

2

∫ t

0

b2(ωs) ds)1O(Bt)
)
≥ − inf

x∈O
I(x)

for every open set O ⊆ R and

lim sup
ϑ→∞

1
ϑ

logE
(
exp(−ϑ

2

2

∫ t

0

b2(ωs) ds)1K(Bt)
)
≤ − inf

x∈K
I(x)

for every compact set K ⊆ R. For ϑ > 0 let Xϑ be a solution of the SDE (5.26) with start
in Xϑ

0 = 0. Then for ϑ → ∞ the family (Xϑ
t )ϑ satisfies the weak LDP with rate function J ,

where J is defined by

J(x) = Φ(x)− Φ(0)− 1
2
· t · Φ′′(m) + I(x).

Proof. From Lemma 1.5 we know the density of the distribution of this solution Xϑ
t :

P (Xϑ
t ∈ A) =

∫
1A(ωt) exp

(
ϑF (ω)− ϑ2G(ω)

)
dW(ω) (5.27)

where

F (ω) = Φ(ω0)− Φ(ωt) +
1
2

∫ t

0

Φ′′(ωs) ds and

G(ω) =
1
2

∫ t

0

b2(ωs) ds.

First let O be open, x ∈ O and δ > 0. Then we can find an η with 0 < η < δ, Bη(x) ⊆ O,
and |Φ(y)− Φ(x)| ≤ δ for all y ∈ Bη(x). Define

F ∗(x) = Φ(0)− Φ(x) +
1
2
tΦ′′(m).
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Then we find

lim inf
ϑ→∞

1
ϑ

logP (Xϑ
t ∈ O)

≥ lim inf
ϑ→∞

1
ϑ

logP (Xϑ
t ∈ Bη(x))

= lim inf
ϑ→∞

1
ϑ

log
∫

1Bη(x)(ωt) exp
(
ϑF (ω)− ϑ2G(ω)

)
dW(ω)

≥ lim inf
ϑ→∞

1
ϑ

log
∫

1Bη(x)(ωt) exp
(
ϑ(F ∗(x)− 2δ)− ϑ2G(ω)

)
·
(
|F (ω)− F ∗(x)| ≤ 2δ

)
dW(ω)

= F ∗(x)− 2δ + lim inf
ϑ→∞

1
ϑ

log
∫

1Bη(x)(ωt) exp
(
−ϑ2G(ω)

)
·
(
|F (ω)− F ∗(x)| ≤ 2δ

)
dW(ω).

By definition of F ∗(x) we have

∣∣F (ω)− F ∗(x)
∣∣ =

∣∣Φ(0)− Φ(ωt) +
1
2

∫ t

0

Φ′′(ωs) ds

− Φ(0) + Φ(x)− 1
2
tΦ′′(m)

∣∣
≤
∣∣Φ(x)− Φ(ωt)

∣∣+
1
2

∫ t

0

∣∣Φ′′(ωs)− Φ′′(m)
∣∣ ds.

Thus whenever ωt ∈ Bη(x) and
∣∣F (ω)− F ∗(x)

∣∣ ≥ 2δ we find

1
2

∫ t

0

∣∣Φ′′(ωs)− Φ′′(m)
∣∣ ds ≥ 2δ − δ = δ.

Because Φ′′ is bounded the above estimate implies that we can find an ε > 0 with∣∣∣{s ∈ [0; t]
∣∣ |ωs −m| ≥ δ/t}∣∣∣ > ε

for all paths ω with ωt ∈ Bη(x) and
∣∣F (ω) − F ∗(x)

∣∣ ≥ 2δ. Because m is the only zero of b and
because lim inf |x|→∞ |b(x)| > 0 we have

inf
{
b2(x)

∣∣ |x−m| ≥ δ/t} > 0,

i.e. we can find a g > 0 with G(ω) > g for all paths ω with ωt ∈ Bη(x) and
∣∣F (ω) − F ∗(x)

∣∣ ≥
2δ. Together this gives

lim sup
ϑ→∞

1
ϑ

log
∫

1Bη(x)(ωt) exp
(
−ϑ2G(ω)

)
(|F (ω)− F ∗(x)| > 2δ) dW(ω)

≤ lim sup
ϑ→∞

1
ϑ

log
∫

exp
(
−ϑ2g

)
dW(ω)

= −∞.

So we can use lemma 2.3 to conclude

lim inf
ϑ→∞

1
ϑ

log
∫

1Bη(x)(ωt) exp
(
−ϑ2G(ω)

)
dW(ω)

= lim inf
ϑ→∞

1
ϑ

log
∫

1Bη(x)(ωt) exp
(
−ϑ2G(ω)

)
(|F (ω)− F ∗(x)| ≤ 2δ) dW(ω)
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and get

lim inf
ϑ→∞

1
ϑ

logP (Xϑ
t ∈ O)

≥ F ∗(x)− 2δ + lim inf
ϑ→∞

1
ϑ

log
∫

1Bη(x)(ωt) exp
(
−ϑ2G(ω)

)
dW(ω)

≥ F ∗(x)− 2δ − inf
y∈Bη(x)

I(y)

≥ F ∗(x)− 2δ − I(x)

for all δ > 0. Letting δ ↓ 0 gives

lim inf
ϑ→∞

1
ϑ

logP (Xϑ
t ∈ O) ≥ F ∗(x)− I(x)

and taking the supremum over all x ∈ O on the right hand side proves the lower bound.

Now let K ⊆ R be compact and δ > 0. For each x ∈ K we can find an η > 0 with
|Φ(y) − Φ(x)| ≤ δ whenever y ∈ Bη(x). Because I is lower semi-continuous we can assume
I(y) ≥ I(x) − δ for every y ∈ Bη(x) by choosing η small enough. Using the compactness
of K we can cover K with a finite number of such balls: there are x1, . . . , xn ∈ K and 0 <
η1, . . . , ηn < δ with

K ⊆
n⋃
k=1

Bηk(xk)

and the above assumption on Φ and I hold for each k. For k = 1, . . . , n consider F ∗(xk) as
defined above. This time we find

lim sup
ϑ→∞

1
ϑ

logP (Xϑ
t ∈ K)

≤ lim sup
ϑ→∞

1
ϑ

log
n∑
k=1

P (Xϑ
t ∈ Bηk(xk))

= max
k=1,...,n

lim sup
ϑ→∞

1
ϑ

log
∫

1Bηk (xk)(ωt) exp
(
ϑF (ω)− ϑ2G(ω)

)
dW(ω).

Because F is bounded on {ωt ∈ Bηk(xk)} we can use lemma 2.3 as above to conclude

lim sup
ϑ→∞

1
ϑ

log
∫

1Bηk (xk)(ωt) exp
(
ϑF (ω)− ϑ2G(ω)

)
dW(ω)

= lim sup
ϑ→∞

1
ϑ

log
∫

1Bηk (xk)(ωt) exp
(
ϑF (ω)− ϑ2G(ω)

)
· (|F (ω)− F ∗(xk)| ≤ 2δ) dW(ω)

for k = 1, . . . , n. This gives

lim sup
ϑ→∞

1
ϑ

logP (Xϑ
t ∈ K)

≤ max
k=1,...,n

lim sup
ϑ→∞

1
ϑ

log
∫

1Bηk (xk)(ωt) exp
(
ϑF (ω)− ϑ2G(ω)

)
· (|F (ω)− F ∗(xk)| ≤ 2δ) dW(ω)

≤ max
k=1,...,n

lim sup
ϑ→∞

1
ϑ

log
∫

1Bηk (xk)(ωt) exp
(
ϑ(F ∗(xk) + 2δ)− ϑ2G(ω)

)
·
(
|F (ω)− F ∗(xk)| ≤ 2δ

)
dW(ω)

≤ max
k=1,...,n

F ∗(xk) + 2δ

+ lim sup
ϑ→∞

1
ϑ

log
∫

1Bηk (xk)(ωt) exp
(
−ϑ2G(ω)

)
dW(ω).
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Now we can use the upper bound on the rate of the integral and our choice of ηk to get

lim sup
ϑ→∞

1
ϑ

logP (Xϑ
t ∈ K)

≤ max
k=1,...,n

F ∗(xk) + 2δ − inf
y∈Bδ(xk)

I(y)

≤ max
k=1,...,n

F ∗(xk) + 2δ − I(xk) + δ.

and letting δ ↓ 0 finishes the proof for compact sets. (qed)

To get the upper bound for general closed sets we have to show exponential tightness of
the L(Xϑ

t ), i.e. we have to show that for every α ∈ R there exists a compact set Kα, such that

lim sup
ϑ→∞

1
ϑ

logP (Xϑ
t /∈ Kα) < −α.

The upper bound for arbitrary closed sets would then follow from lemma 2.1.
Note that we can learn some properties of I from the fact that J is a rate function. As

a rate function J is positive. So we can conclude that the function I from the lemma must
satisfy

I(x) ≥ −Φ(x) + Φ(0) +
1
2
· t · Φ′′(m)

for all x ∈ R.
The following lemma is a generalisation of corollary 4.3. It helps to determine the rate

function I which is needed to apply lemma 5.17.

Lemma 5.18. Let m ∈ R and b : R → R be a C2-function with b(x) = 0 if and only if
x = m, b′(m) 6= 0, and lim inf |x|→∞ |b(x)| > 0. Then for any compact set K ⊆ R we have

lim sup
ε→0

ε logP
(1

2

∫ t

0

b2(Bs) ds ≤ ε,Bt ∈ K
)

≤ −1
4

inf
a∈K

(∣∣∫ m

0

|b(x)| dx
∣∣+

1
2
|b′(m)|t+

∣∣∫ a

m

|b(x)| dx
∣∣)2

and for any open set O ⊆ R we have

lim inf
ε→0

ε logP
(1

2

∫ t

0

b2(Bs) ds ≤ ε,Bt ∈ O
)

≥ −1
4

inf
a∈O

(∣∣∫ m

0

|b(x)| dx
∣∣+

1
2
|b′(m)|t+

∣∣∫ a

m

|b(x)| dx
∣∣)2

.

Proof. As an abbreviation define v(x) = b2(x)/2 for all x ∈ R. For the proof of the
upper bound choose a compact set K, let δ, η, τ > 0 and choose Dδ

3 as in lemma 2.6. Then for
ε < t/2τ we have{∫ t

0

v(Bs) ds ≤ ε,Bt ∈ K
}

⊆
⋃
α∈Dδ3

{∫ ετ

0

v(Bs) ds ≤ α1ε,

∫ t−ετ

ετ

v(Bs) ds ≤ α2ε,

∫ t

t−ετ
v(Bs) ds ≤ α3ε,Bt ∈ K

}
.
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Writing (A) for the indicator function of A and using the strong Markov property of
Brownian motion this gives

P
(∫ t

0

v(Bs) ds ≤ ε,Bt ∈ K
)

≤
∑
α∈Dδ3

E
(

(
∫ ετ

0
v(Bs) ds ≤ α1ε)(

∫ t−ετ
ετ

v(Bs) ds ≤ α2ε)

E
(
(
∫ t
t−ετ v(Bs) ds ≤ α3ε,Bt ∈ K)

∣∣ Ft−ετ))
=
∑
α∈Dδ3

E
(

(
∫ ετ

0
v(Bs) ds ≤ α1ε)(

∫ t−ετ
ετ

v(Bs) ds ≤ α2ε)

EBt−ετ
(
(
∫ ετ

0
v(Bs) ds ≤ α3ε,Bετ ∈ K)

))
=:

∑
α∈Dδ3

p(α, ε)

Now let α ∈ Dδ
3 be fixed and a > 0. We split the corresponding event further by distin-

guishing the two cases
{

supετ≤s≤t−ετ |Bs −m| > a
}
and

{
supετ≤s≤t−ετ |Bs −m| ≤ a

}
. Since

omitting some conditions makes the probability only larger we get

p(α, ε) ≤ p1(α, ε) + p2(α, ε)

with

p1(α, ε) = sup
y∈R

Py

(∫ t−2ετ

0

v(Bs) ds ≤ α2ε, sup
0≤s≤t−2ετ

|Bs −m| > a
)

and

p2(α, ε) = P
(∫ ετ

0

v(Bs) ds ≤ α1ε, |Bετ −m| ≤ a
)

· sup
y∈R

Py

(∫ t−2ετ

0

v(Bs) ds ≤ α2ε, sup
0≤s≤t−2ετ

|Bs −m| ≤ a
)

· sup
|z−m|≤a

Pz

(∫ ετ

0

v(Bs) ds ≤ α3ε,Bετ ∈ K
)
.

To calculate the rate for the sum p1(α, ε) + p2(α, ε) we have to calculate the rates of the
individual terms. For p1 we can use lemma 5.12 to get

lim sup
ε→0

ε log p1(α, ε)

≤ lim sup
ε→0

ε log sup
|y−m|<a/2

Py

(∫ t−η

0

v(Bs) ds ≤ α2ε, sup
0≤s≤t−η

|Bs −m| > a
)
,

≤ −1
8

(
t− η +

1
2
a2
)2

.

Since for fixed η this rate become arbitrary small when a becomes large, we can choose a large
enough that the rate of p1(α, ε) + p2(α, ε) is dominated by p2.

To treat the p2-term we apply lemma 2.5 for the rate of a product. From proposition 5.3
we know the individual rates

lim sup
ε→0

ε logP
(∫ ετ

0

v(Bs) ds ≤ ε, |Bετ −m| ≤ a
)

≤ −1
4

(∫ m

0

|b(x)| dx
)2

· r2
1(τ)
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and

lim sup
ε→0

ε log sup
|z−m|≤a

Pz

(∫ ετ

0

v(Bs) ds ≤ ε,Bετ ∈ K
)

≤ −1
4

inf
a∈K

(∫ a

m

|b(x)| dx
)2

· r2
2(τ)

where limτ→∞ r1(τ) = limτ→∞ r2(τ) = 1, and lemma 5.16 gives

lim sup
ε→0

ε log sup
y∈R

Py

(∫ t−2ετ

0

v(Bs) ds ≤ ε, sup
0≤s≤t−2ετ

|Bs −m| ≤ a
)

≤ lim sup
ε→0

ε log sup
|y−m|<a/2

Py

(∫ t−η

0

v(Bs) ds ≤ ε, sup
0≤s≤t−η

|Bs −m| ≤ a
)

≤ −|b
′(m)|2(t− η)2

16
.

Using lemma 2.5 we get the combined rate

lim sup
ε→0

ε log p(α, ε)

≤ − 1
1 + δ

(1
2

∣∣∫ m

0

|b(x)| dx
∣∣ · r1(τ)

+
1
4
|b′(m)| · (t− η) +

1
2

inf
a∈K

∣∣∫ a

m

|b(x)| dx
∣∣ · r2(τ)

)2

for all α ∈ Dδ
3.

The rate for the sum over all α ∈ Dδ
3 can be estimated with lemma 2.2. The result is

lim sup
ε→0

ε logP
(∫ t

0

v(Bs) ds ≤ ε,Bt ∈ K
)

≤ − 1
1 + δ

(1
2

∣∣∫ m

0

|b(x)| dx
∣∣ · r1(τ)

+
1
4
|b′(m)| · (t− η) +

1
2

inf
a∈K

∣∣∫ a

m

|b(x)| dx
∣∣ · r2(τ)

)2

for all η > 0, δ > 0, and τ > 0. Letting finally τ →∞, δ ↓ 0, and η ↓ 0 gives

lim sup
ε→0

ε logP
(1

2

∫ t

0

b2(Bs) ds ≤ ε,Bt ∈ K
)

≤ −1
4

(1
2

∣∣∫ m

0

|b(x)| dx
∣∣+

1
2
|b′(m)|t+ inf

a∈K

∣∣∫ a

m

|b(x)| dx
∣∣)2

.

This proves the upper bound.

For the lower bound: Let ζ, η, τ > 0 and α1, α2, α3 ∈ R with α1 + α2 + α3 = 1. Then for
ε < t/2τ we have {∫ t

0

v(Bs) ds ≤ ε,Bt ∈ O
}

⊇
{∫ ετ

0

v(Bs) ds ≤ α1ε, |Bετ −m| < ζ
}

∩
{∫ t−ετ

ετ

v(Bs) ds ≤ α2ε, |Bt−ετ −m| < η
}

∩
{∫ t

t−ετ
v(Bs) ds ≤ α3ε,Bt ∈ O

}



68 CHAPTER 5. DIFFUSIONS WITH STRONG DRIFT

and thus we get

P
(∫ t

0

v(Bs) ds ≤ ε,Bt ∈ O
)

≥ E
((∫ ετ

0

v(Bs) ds ≤ α1ε, |Bετ −m| < ζ
})

·
(∫ t−ετ

ετ

v(Bs) ds ≤ α2ε, |Bt−ετ −m| < η
)

· E
((∫ t

t−ετ
v(Bs) ds ≤ α3ε,Bt ∈ O

) ∣∣∣ Ft−ετ))
≥ E

((∫ ετ

0

v(Bs) ds ≤ α1ε, |Bετ −m| < ζ
)

· E
((∫ t−ετ

ετ

v(Bs) ds ≤ α2ε, |Bt−ετ −m| < η
) ∣∣∣ Fετ))

· inf
m−η<y<m+η

Py

(∫ ετ

0

v(Bs) ds ≤ α3ε,Bετ ∈ O
)

≥ P0

(∫ ετ

0

v(Bs) ds ≤ α1ε,Bετ ∈ (m− ζ;m+ ζ)
)

· inf
m−ζ<z<m+ζ

Pz

(∫ t−2ετ

0

v(Bs) ds ≤ α2ε, |Bt−2ετ −m| < η
)

· inf
m−η<y<m+η

Py

(∫ ετ

0

v(Bs) ds ≤ α3ε,Bετ ∈ O
)
.

First take lower exponential rates for ε ↓ 0. The lower exponential rate of the left-hand side
is greater or equal to the sum of the lower rates of the right-hand side. This inequality holds
for all η, τ > 0 and α1, α2, α3 ∈ R with α1 + α2 + α3 = 1.

Then let τ → ∞. We treat the three terms on the right hand side individually. First term:
from Lemma 5.1 we know

lim
τ→∞

lim inf
ε↓0

ε logP0

(∫ ετ

0

v(Bs) ds ≤ α1ε,Bετ ∈ (m− ζ;m+ ζ)
)

≥ − 1
α1

1
4

inf
m−ζ<a<m+ζ

(∣∣∫ m

0

|b(x)| dx
∣∣+
∣∣∫ a

m

|b(x)| dx
∣∣)2

= − 1
α1

1
4

(∣∣∫ m

0

|b(x)| dx
∣∣)2

· r1(ζ)

where limζ↓0 r1(ζ) = 1.
Second term: we can make the probability smaller by replacing t − 2ετ with t. Then the

term is no longer τ -dependent and using lemma 5.16 we get

lim inf
ε↓0

ε log inf
m−ζ<z<m+ζ

Pz

(∫ t−2ετ

0

v(Bs) ds ≤ α2ε, |Bt−2ετ −m| < η
))

≥ − 1
α2

|b′(m)|2

16
t2 · r2(ζ)

where limζ↓0 r2(ζ) = 1.
Third term: using corollary 5.4 we get

lim inf
ε↓0

ε log inf
m−η<y<m+η

Py

(∫ ετ

0

v(Bs) ds ≤ α3ε,Bετ ∈ O
)

≥ − 1
α3

1
4

inf
a∈O

(∫ a

m

|b(x)| dx
)2

· r3(η)

where limη↓0 r3(η) = 1.
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Combining the three rates we get

lim inf
ε↓0

ε logP
(
Bt ∈ O,

∫ t

0

v(Bs) ds ≤ ε
)

≥ − 1
α1

1
4

(∣∣∫ m

0

|b(x)| dx
∣∣)2

· r1(ζ)

− 1
α2

|b′(m)|2

16
t2 · r2(ζ)

− 1
α3

1
4

inf
a∈O

(∣∣∫ a

m

|b(x)| dx
∣∣)2

· r3(η).

and letting first ζ ↓ 0 and then η ↓ 0 yields

lim inf
ε↓0

ε logP
(
Bt ∈ O,

∫ t

0

v(Bs) ds ≤ ε
)

≥ − 1
α1

(1
2

∫ m

0

|b(x)| dx
)2

− 1
α2

( |b′(m)|
4

t
)2

− 1
α3

(1
2

inf
a∈O

∫ a

m

|b(x)| dx
)2

for all α1, α2, α3 ∈ R with α1 + α2 + α3 = 1.
Choosing optimal α1, α2, and α3 as described in lemma 2.4 we get

lim inf
ε↓0

ε logP
(
Bt ∈ O,

1
2

∫ t

0

b2(Bs) ds ≤ ε
)

≥ −
(1

2

∣∣∫ m

0

|b(x)| dx
∣∣+
|b′(m)|

4
t+

1
2

inf
a∈O

∣∣∫ a

m

|b(x)| dx
∣∣)2

= −1
4

(∣∣∫ m

0

|b(x)| dx
∣∣+
|b′(m)|

2
t+ inf

a∈O

∣∣∫ a

m

|b(x)| dx
∣∣)2

.

This completes the proof. (qed)

The main result of this chapter is the following theorem together with the corollaries 5.20
and 5.21.

Theorem 5.19. Let Φ: R→ R be a C3-function with bounded Φ′′ and b = −Φ′. Assume
there is an m ∈ R with b(x) = 0 if and only if x = m, b′(m) 6= 0, and lim inf |x|→∞ |b(x)| > 0.
Then for every t > 0 the solution Xϑ of

dXϑ
s = ϑb(Xs) � ds+ dBs for s ∈ [0; t], and

Xϑ
0 = z ∈ R

satisfies the following weak LDP: for every compact set K ⊆ R we have

lim sup
ϑ→∞

1
ϑ

logP (Xϑ
t ∈ K) ≤ − inf

x∈K
Jt(x)

and for every open set O ⊆ R we have

lim inf
ϑ→∞

1
ϑ

logP (Xϑ
t ∈ O) ≥ − inf

x∈O
Jt(x),

where the rate function is

Jt(x) = V mz (Φ)− Φ(z) + t(Φ′′(m))− + V xm(Φ) + Φ(x). (5.28)
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In the theorem V ba (Φ) denotes the total variation of Φ between a and b. It can be inter-
preted as the “cost” of the process going from a to b. Because b = −Φ′ we have

V ba (Φ) =
∣∣∫ b

a

|b(x)| dx
∣∣

for any a, b ∈ R. The notation (Φ′′(m))− denotes the negative part of Φ′′(m), i.e. (Φ′′(m))− =
0 if Φ′′(m) ≥ 0 and (Φ′′(m))− = |Φ′′(m)| if Φ′′(m) < 0. This can be interpreted as the “cost”
of staying near m for a unit of time. This term only occurs, if the equilibrium point m is
unstable.

Proof. Since the rate function Jt is invariant under space shifts we can without loss of
generality assume z = 0 by replacing Φ with the shifted function Φ( · + z) and starting the
SDE in 0. Since most of the work was already done in the previous section, the proof consists
only of three steps.

First define

H(x) =
1
4

(∣∣∫ m

0

|b(y)| dy
∣∣+

1
2
|b′(m)|t+

∣∣∫
[m;x]

|b(y)| dy
∣∣)2

=
1
4

(
V m0 (Φ) +

1
2
|b′(m)|t+ V xm(Φ)

)2

and v(x) = b2(x)/2 for all y ∈ R. From lemma 5.18 we know that for every compact set
K ⊆ R we have

lim sup
ε→0

ε logP
(∫ t

0

v(Bs) ds ≤ ε,Bt ∈ K
)
≤ − inf

a∈K
H(a)

and for every open set O ⊆ R we have

lim inf
ε→0

ε logP
(∫ t

0

v(Bs) ds ≤ ε,Bt ∈ O
)
≥ − inf

a∈O
H(a).

Second, let

I(x) = 2
√
H(x) = V m0 (Φ) +

1
2
|b′(m)|t+ V xm(Φ)

for all x ∈ R. Then for every set A ⊆ R we find

−2
√∣∣− inf

x∈A
H(x)

∣∣ = −2
√

inf
x∈A

H(x) = − inf
x∈A

I(x)

and corollary 4.8 allows us to conclude

lim sup
ϑ→∞

1
ϑ

logE
(
exp(−ϑ2

∫ t

0

v(ωs) ds)1K(Bt)
)
≤ − inf

x∈K
I(x)

for every compact set K ⊆ R and

lim inf
ϑ→∞

1
ϑ

logE
(
exp(−ϑ2

∫ t

0

v(ωs) ds)1O(Bt)
)
≥ − inf

x∈O
I(x)

for every open set O ⊆ R.
Finally we can use lemma 5.17 to conclude that the family (Xϑ

t )ϑ>0 satisfies the weak LDP
with rate function

Jt(x) = Φ(x)− Φ(0)− 1
2
· t · Φ′′(m) + I(x)

= Φ(x)− Φ(0) + V m0 (Φ) + t(Φ′′(m))− + V xm(Φ).

This completes the proof. (qed)
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Given the sign of b′(m) the rate function from the theorem can be simplified because the
drift b has only one zero. The following corollary describes the case of b′(m) < 0, which corres-
ponds to attracting drift. In this case the weak LDP from the theorem can be strengthend to
the full LDP.

Corollary 5.20. Let Φ: R → R be a C3-function with bounded Φ′′ and b = −Φ′.
Assume there is an m ∈ R with b(x) = 0 if and only if x = m, b′(m) < 0, and
lim inf |x|→∞ |b(x)| > 0. Furthermore let Xϑ be the solution of

dXϑ
t = ϑb(Xt) � dt+ dBt,

Xϑ
0 = z ∈ R.

(5.29)

Then the following claims hold:
a) For every t > 0 the family (Xϑ

t )ϑ>0 for ϑ → ∞ satisfies the weak LDP on R with rate
function

Jt(x) = 2
(
Φ(x)− Φ(m)

)
for all x ∈ R. (5.30)

b) If b is monotone, then the family (Xϑ
t )ϑ>0 satisfies the full LDP with rate function Jt.

Proof. a) Since we assume that m is the only zero of the drift b, for b′(m) < 0 the point m
is the minimum of Φ. In this case we have V mz (Φ) = Φ(z) − Φ(m), V xm(Φ) = Φ(x) − Φ(m) and
Φ′′(m) > 0, so the rate function simplifies to the expression given in formula (5.30).

b) To strengthen the weak LDP to the full LDP we have to check the exponential tightness
condition from lemma 2.1, i.e. we have to show that for every c > 0 there is an a > 0 with

lim sup
ϑ→∞

1
ϑ

logP
(
|Xϑ

t −m| > a
)
< −c. (5.31)

We use a comparison argument to obtain this estimate.
Using the assumption lim inf |x|→∞ |b(x)| > 0 and theorem 1.4 we find that the SDE (5.29)

has a stationary distribution with density exp
(
−2ϑΦ(x)

)
. Let Xϑ be a solution of (5.29) with

start in z and Y ϑ be a stationary solution, both with respect to the same Brownian motion.
Then we get the deterministic differential equation

d

dt
(Xϑ

t − Y ϑt ) = ϑ
(
b(Xϑ

t )− b(Y ϑt )
)

for the difference between the processes. First assume Xϑ
0 − Y ϑ0 ≥ 0. Because for Xϑ

t − Y ϑt = 0
the right hand side vanishes, the process Xϑ

t − Y ϑt can never change its sign and stays positive.
Since b is decreasing we have b(Xϑ

t )− b(Y ϑt ) ≤ 0 and we can conclude

0 ≤ Xϑ
t − Y ϑt ≤ Xϑ

0 − Y ϑ0 .

For the case Xϑ
0 − Y ϑ0 ≤ 0 we can interchange the roles of X and Y to obtain the estimate

0 ≤ Y ϑt −Xϑ
t ≤ Y ϑ0 −Xϑ

0 .

Combining these two cases gives

|Y ϑt −Xϑ
t | ≤ |Y ϑ0 −Xϑ

0 | = |Y ϑ0 − z|.

Using

|Xϑ
t −m| ≤ |Xϑ

t − Y ϑt |+ |Y ϑt −m|
≤ |z − Y ϑ0 |+ |Y ϑt −m|
≤ |z −m|+ |Y ϑ0 −m|+ |Y ϑt −m|



72 CHAPTER 5. DIFFUSIONS WITH STRONG DRIFT

Figure 5.4: This figure illustrates the potential use of a comparison theorem for solutions of the
SDE (5.29). The thick line is the original drift b. The thin line is the new drift ϕ. The solution
for drift b should be closer to m than the solution for drift ϕ.

we can conclude

P
(
|Xϑ

t −m| > a
)
≤ P

(
|Y ϑ0 −m|+ |Y ϑt −m| > a− |z −m|

)
≤ P

(
|Y ϑ0 −m| >

a− |z −m|
2

)
+ P

(
|Y ϑt −m| >

a− |z −m|
2

)
= 2P

(
|Y ϑ0 −m| >

a− |z −m|
2

)
.

Now let c > 0. Then using theorem 2.13 we can find an a > 0 with

lim
ϑ→∞

1
ϑ

logP
(
|Y ϑ0 −m| >

a− |z −m|
2

)
≤ −c

and using the above estimate we get

lim
ϑ→∞

1
ϑ

logP
(
|Xϑ

t −m| > a
)
≤ −c.

Since this is the exponential tightness condition (5.31) we can use lemma 2.1 to derive the full
LDP and to complete the proof. (qed)

Remarks. 1) Note that in this case the rate function is independent of the interval
length t. Because we have lim inf |x|→∞ |b(x)| > 0 the potential Φ converges to +∞ for |x| → ∞
and Jt is a good rate function. In fact the rate function coincides with the rate function of the
LDP for the stationary distribution from theorem 2.13. This makes sense, because for strong
drift we would expect the process to reach the equilibrium very quickly.

2) Using the assumptions on b we can find a monotonically decreasing, differentiable func-
tion ϕ : R→ R which satisfies

|b(x)| ≥ |ϕ(x)| for all x ∈ R

and has ϕ′(m) < 0. This is illustrated in figure 5.4.
Because the drift b pushes the process stronger towards m than the drift ϕ does, one

could guess that when Y ϑ is a solution of the SDE with drift ϑϕ instead of ϑb we would have
P
(
|Xϑ

t −m| > a
)
≤ P

(
|Y ϑt −m| > a

)
. This would show that for finding an upper bound on

P
(
|Xϑ

t −m| > a
)
we could without loss of generality assume b to be monotonically decreasing.
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Example 5.1. For the Ornstein-Uhlenbeck process we have Φ(x) = αx2/2. Thus, using
corollary (5.20) we get the rate function

Jt(x) = αx2

which coincides with the previous result from formula (3.4).

The case of repelling drift, i.e. of b′(m) > 0 is described in the following corollary.

Corollary 5.21. Let Φ: R → R be a C3-function with bounded Φ′′ and b = −Φ′.
Assume there is an m ∈ R with b(x) = 0 if and only if x = m, b′(m) > 0, and
lim inf |x|→∞ |b(x)| > 0. Then for every t > 0 the solution Xϑ of

dXϑ
s = ϑb(Xs) � ds+ dBs for s ∈ [0; t], and

Xϑ
0 = z ∈ R

satisfies the weak LDP on R with constant rate function

Jt(x) = 2
(
Φ(m)− Φ(z)

)
− tΦ′′(m). (5.32)

Proof. In the case b′(m) > 0 the point m is the maximum of Φ and because of V mz (Φ) =
Φ(m)− Φ(z), V xm(Φ) = Φ(m)− Φ(x) and Φ′′(m) < 0 we get

Jt(x) =
(
Φ(m)− Φ(z)

)
− Φ(z)− tΦ′′(m) +

(
Φ(m)− Φ(x)

)
+ Φ(x)

= 2
(
Φ(m)− Φ(z)

)
− tΦ′′(m)

for all x ∈ R. (qed)

Remarks. The corollary shows that in the case of repelling drift the rate function does
not depend on x. In particular it is not a good rate function. Also in this case it is impossible
to strengthen the weak LDP to the full LDP because we have

lim
ϑ→∞

1
ϑ

logP (Xϑ
t ∈ R) = 0 6= 2

(
Φ(m)− Φ(z)

)
− tΦ′′(m).

Example 5.2. For ϑ > 0 consider the solution of the SDE

dXϑ
t = ϑXϑ

t � dt+ dBt,

Xϑ
0 = z ∈ R.

(5.33)

This time the equilibrium point 0 is unstable, as soon as the process leaves 0 the drift will
drive it further and further away. Here we have Φ(x) = −x2/2 and using corollary 5.21 we can
determine the rate function for the large deviation behaviour of Xϑ

t as

Jt(x) = t+ z2. (5.34)

As in the case of the Ornstein-Uhlenbeck process (see page 24) we can explicitly determine
the distribution of Xϑ

t and verify the somewhat surprising result 5.34 manually. Since the
derivation of formula (3.2) did not depend on the sign of the drift we get

Xt = eϑtz +
∫ t

0

eϑ(t−s) dBs. (5.35)

Because the SDE (5.33) is linear, we know that Xϑ
t has a Gaussian distribution and from (5.35)

we find the expectation
µ = E(Xϑ

t ) = eϑtz
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and the variance

σ2 = E
(
(Xϑ

t − µ)2
)

= E
((∫ t

0

eϑ(t−s) dBs
)2)

=
∫ t

0

e2ϑ(t−s) ds =
1

2ϑ
(e2ϑt − 1).

Thus for every measurable set A ⊆ R we have

P (Xϑ
t ∈ A) =

1√
2πσ2

∫
A

exp
(
− (x− µ)2

2σ2

)
dx

=

√
ϑ

π

(
e2ϑt − 1

)−1/2
∫
A

exp
(
−ϑ (e−ϑtx− z)2

1− e−2ϑt

)
dx.

Now we can calculate the exponential rates of this expression for ϑ → ∞. For the normal-
ising constant we find

lim
ϑ→∞

1
ϑ

log

√
ϑ

π

(
e2ϑt − 1

)−1/2 = −1
2

2t = −t.

If A ⊆ R is bounded, then

sup
x∈A

∣∣∣ (e−ϑtx− z)2

1− e−2ϑt
− z2

∣∣∣ −→ 0

for ϑ→∞ and thus for compact sets K ⊆ R we find

lim
ϑ→∞

1
ϑ

logP (Xϑ
t ∈ K)

= −t+ lim
ϑ→∞

1
ϑ

log
∫
K

exp(−z2) dx = −(t+ z2).

For open sets O ⊆ R we can choose any bounded subset A ⊆ O with non-zero Lebesgue
measure, to get

lim inf
ϑ→∞

1
ϑ

logP (Xϑ
t ∈ O)

≥ lim inf
ϑ→∞

1
ϑ

logP (Xϑ
t ∈ A)

= −t+ lim
ϑ→∞

1
ϑ

log
∫
A

exp(−z2) dx = −(t+ z2).

This reproduces the result from the corollary.



Chapter 6

AsymptoticSeparationofProcesses

One application of large deviation results is to determine the exponential decay rate of the
Bayes risk for the separation of two processes which are observed over long intervals of time.
This rate is a measure of how easy it is to distinguish between two processes while only look-
ing at the paths.

6.1 The Bayes Risk

We consider two mechanisms to generate a stochastic process, e.g. two different drift fields,
which are indexed by a parameter ϑ ∈ Θ = {0, 1}. For ϑ ∈ Θ let Pϑt = L(X)

∣∣
Ft

be the law of
the corresponding process Xϑ observed up to time t.

The Bayes risk B(λ, t) with a priory distribution λ ∈ Prob(Θ) is defined by

B(λ, t) =
∫

min
ϑ∈Θ

dλϑP
ϑ
t

dPt
dPt

where Pt = λ1P
1
t + λ0P

0
t . Assuming that the distribution L(Xt)

∣∣
Ft

on the path space has a
density ϕϑt with respect to Wiener measureW we find

B(λ, t) = λ1P
1
t (λ1ϕ

1
t < λ0ϕ

0
t ) + λ0P

0
t (λ1ϕ

1
t ≥ λ0ϕ

0
t ). (6.1)

Thus B(λ, t) can be seen as the total probability of error for a likelihood ratio test for the
parameter ϑ, where ϑ is chosen randomly according to the distribution λ. Figure 6.1 gives a
geometric interpretation of the Bayes risk in this situation.

We want to calculate the exponential decay rates

lim
t→∞

1
t

logB(λ, t) (6.2)

of the Bayes risk. This rate is measure of how fast the Bayes risk decays when the observation
time t tends to infinity. Thus it is a measure of how easy the two processes can be separated
by looking only at the paths. A very negative Bayes risk indicates, that the processes are very
different and thus easy to distinguish, a Bayes risk that is close to zero indicates processes
which are similar.

In corollary 5.6 of [KW97] is is shown that if the limit in (6.2) exists, then it does not
depend on λ (except for the pathologic cases λ0 = 0 or λ1 = 0). So we can choose for ex-
ample λ = (1/2, 1/2) to calculate the rate, which gives

B(t) := B
(
(1/2, 1/2), t

)
=

1
2
P 0
t (ϕ0

t ≤ ϕ1
t ) +

1
2
P 1
t (ϕ0

t > ϕ1
t )

75
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Figure 6.1: This figure illustrates the geometric interpretation of the Bayes risk. The two curves
are the weighted densities of the distributions on the probability space Ω. The Bayes risk is the
size of the hatched area. It is large if the distributions are similar.

and using lemma 2.2 we get

lim
t→∞

1
t

logB(λ, t) = max
(

lim
t→∞

1
t

logP 0
t (ϕ0

t ≤ ϕ1
t ),

lim
t→∞

1
t

logP 1
t (ϕ0

t > ϕ1
t )
) (6.3)

for all λ ∈ Prob(ϑ).

Here we consider two reversible diffusions with different drift fields. For ϑ ∈ Θ = {0, 1} let
Φϑ : Rd → R be two time continuously differentiable, bϑ = − grad Φϑ, and Xϑ be a solution of
the SDE

dXϑ = bϑ(Xϑ) � dt+ dB

Xϑ
0 = 0.

(6.4)

From lemma 1.5 we know the explicit form of the densities ϕϑt . They can be defined by

ϕϑt (ω) = exp
(
−Φϑ(ωt) + Φϑ(0)−

∫ t

0

vϑ(ωs) ds
)

for all ω ∈ C
(
[0;∞),Rd

)
where vϑ =

(
(∇Φϑ)2 −∆Φϑ

)
/2. Because the exponential function is

monotonically increasing, the event ϕ0
t (X

0) ≤ ϕ1
t (X

0) in equation (6.3) can be expressed as

−Φ0(X0
t ) + Φ0(X0

0 )−
∫ t

0

v0(X0
s ) ds ≤ −Φ1(X0

t ) + Φ1(X0
0 )−

∫ t

0

v1(X0
s ) ds

or equivalently as

1
t

∫ t

0

(
v1 − v0

)
(X0

s ) ds+
1
t

(
Φ1 − Φ0

)
(X0

t )− 1
t

(
Φ1 − Φ0

)
(X0

0 ) ≤ 0. (6.5a)

The opposite event ϕ0
t (X

1) > ϕ1
t (X

1) becomes

1
t

∫ t

0

(
v1 − v0

)
(X1

s ) ds+
1
t

(
Φ1 − Φ0

)
(X1

t )− 1
t

(
Φ1 − Φ0

)
(X1

0 ) > 0. (6.5b)

In order to calculate the rate for the Bayes risk we have to consider large deviations for
the events (6.5a) and (6.5b). In general this is a difficult problem. The following example
illustrates the procedure for a very simple case.

Example 6.1 (Constant drift). Assume that we have fixed vectors b0, b1 ∈ Rd with
bϑ(x) = bϑ for all x ∈ Rd. From example 1.1 we know that we have Φϑ(x) = −bϑ · x and
vϑ(x) = |bϑ|2/2 here. Thus the densities ϕϑ only depend on the endpoint Xϑ

t of the path and
we get

ϕ0
t (X

0) ≤ ϕ1
t (X

0) ⇐⇒ b1 + b0

2
· (b1 − b0)− 1

t
X0
t · (b1 − b0) ≤ 0.
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Because the drift is constant bϑ the value X0
t is N (t ·b0, t)-distributed, thus X0

t /t is N (b0, 1/t)-
distributed and the above condition means that X0

t /t is contained in the half-plane with
normal vector b1 − b0 which does not contain the vector b0. Corollary 2.12 gives

lim
t→∞

1
t

logP
(
ϕ0
t (X

0) ≤ ϕ1
t (X

0)
)

= −1
2

∣∣∣b1 + b0

2

∣∣∣2 = −|b
1 − b0|2

8

and a very similar calculation also shows

lim
t→∞

1
t

logP
(
ϕ0
t (X

1) > ϕ1
t (X

1)
)

= −|b
1 − b0|2

8
.

Thus both rates from the right hand side of (6.3) coincide and we get the result

lim
t→∞

1
t

logB(λ, t) = −|b
1 − b0|2

8
.

Details about this can be found in [Voß97].

6.2 Asymptotic Separation of OU Processes

In this section we determine the exponential rate for the decay of the Bayes risk when distin-
guishing two Ornstein-Uhlenbeck processes with different parameters α0 and α1.

As we have seen in chapter 3 the density of a d-dimensional Ornstein-Uhlenbeck process
with parameter αϑ on the path space is

ϕϑt (ω) = exp
(
−αϑ

ω2
t

2
− 1

2

∫ t

0

α2
ϑω

2
s − αϑ ds

)
.

The representation of the event ϕ0
t (X

0) ≤ ϕ1
t (X

0) from (6.5a) becomes

α2
1 − α2

0

2
1
t

∫ t

0

(X0
s )2 ds− α1 − α0

2
d+ (α1 − α0)

(X0
t )2

2t
≤ 0

and assuming α0 > α1 > 0 we can divide by α1 − α0 < 0 to get the condition

α1 + α0

2
1
t

∫ t

0

(X0
s )2 ds− d

2
+

(X0
t )2

2t
≥ 0. (6.6a)

The distribution of the process X converges to a d-dimensional Gaussian distribution with
expectation 0 and covariance matrix 1

2αId. Almost surely we have

1
t

∫ t

0

(Xs)2 ds→ d

2α
and

(Xt)2

t
→ 0

for t→∞, so the left hand side of (6.6a) a.s. converges to

α1 + α0

2
d

2α0
− d

2
+ 0 <

2α0

2
d

2α0
− d

2
= 0

and we can see that the probability of the event (6.6a) at least converges to 0.
Similarly we find that for α0 > α1 > 0 the event ϕ0

t (X
1) > ϕ1

t (X
1) is equivalent to

α1 + α0

2
1
t

∫ t

0

(X1
s )2 ds− d

2
+

(X1
t )2

2t
< 0. (6.6b)

The following theorem states the main result of the section.
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Figure 6.2: This figure sketches the rate function Ic for Yt/t from formula (6.7). The process
converges to −(c · 1/2α+ 1/2) = (α0 − α1)/4α1. We will consider the event Yt/t < 0.

Theorem 6.1. The exponential decay rate of the Bayes risk B(λ, t) for the distinction
between two one-dimensional Ornstein-Uhlenbeck processes with parameters α0, α1 > 0 is

lim
t→∞

1
t

logB(λ, t) = − (α1 − α0)2

8(α1 + α0)
.

for every a priory distribution λ ∈ Prob
(
{0, 1}

)
with λ0 6= 0 and λ1 6= 0.

Proof. We calculate the two rates R1 and R0 in the maximum from formula (6.3) separ-
ately. Without loss of generality we may assume α0 > α1 > 0 and using equation (6.6b) we
get

R1 := lim
t→∞

1
t

logP 1
t

(
ϕ0
t > ϕ1

t

)
= lim
t→∞

1
t

logP 1
t

(α1 + α0

2
1
t

∫ t

0

X2
s ds−

1
2

+
X2
t

2t
< 0
)

= lim
t→∞

1
t

logP 1
t

( X2
t

2t
− 1
t

∫ t

0

−α1 + α0

2
X2
s +

1
2
ds < 0

)
The large deviation behaviour of the random variables Yt(c)/t with

Yt(c) =
1
2
X2
t −

∫ t

0

cX2
s +

1
2
ds

where X is an Ornstein Uhlenbeck process is examined by Florens-Landais and Pham in
[FLP99]. We use the first case of theorem 2.2 from their article: Let X be an Ornstein-
Uhlenbeck process with parameter α. Then for every c ≤ −α/2 the family Yt(c)/t satisfies
the large deviation principle on R with the good rate function Ic defined by

Ic(y) =

−
α2

c

(y + c+α
2α )2

2y + 1
if y > − 1

2 , and

+∞ else.
(6.7)

The rate function for this case is sketched in figure 6.2.
Since in our situation we have α = α1 and c = −(α1 + α0)/2 the rate function is decreasing

to the left of −(c + α)/2α = (α0 − α1)/4α1 > 0 and is increasing to the right of this point.
Because (−∞; 0) is a continuity set of Ic we get

R1 = lim
t→∞

1
t

logP 1
t

(Yt(c)
t

< 0
)

= −Ic(0) = − (c+ α)2

4c
= − (α0 − α1)2

8(α0 + α1)
.
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Now we have to calculate the other rate from formula (6.3). Assuming α0 > α1 > 0 again,
we get

R0 = lim
t→∞

1
t

logP 0
t

(
ϕ0
t ≤ ϕ1

t

)
= lim
t→∞

1
t

logP 0
t

(Yt(c)
t
≥ 0
)
,

but this time with α = α0 and c = −(α1 + α0)/2. The rate function is decreasing to the left of
−(c + α)/2α = (α1 − α0)/4α0 < 0 and is increasing to the right of this point. So we get again
the result

R0 = −Ic(0) = − (α0 − α1)2

8(α0 + α1)
.

This proves that both terms in the maximum on the right hand side of formula (6.3), and
thus the maximum itself, are equal to the rate from our claim. (qed)

6.3 Asymptotic Separation of Continuous Time Markov
Chains

In this section we determine the exponential decay rate for the Bayes risk when separating
two continuous time Markov chains. These processes are no diffusion processes in the sense
of chapter 1, but the concept of the Bayes risk of course also makes sense here. We will see,
that the exponential rate of the Bayes risk is er − 1, where r is the rate for separation of the
embedded Markov chains.

Let X be a continuous time Markov chain with finite state space S and generator q ∈
R
S×S . For the technical details about continuous time Markov chains and their generators we

refer to [Law95]. Because q is a generator we have qij ≥ 0 for i 6= j and qii = −
∑
j 6=i qij < 0

for all i ∈ S. The process X can be described with the help of an embedded Markov chain Y :
whenever X reaches a state i ∈ S, the process stays there for an Exp(−qii)-distributed time
and then jumps into a randomly chosen new state. The new state is j 6= i with probabil-
ity qij/

∑
k 6=i qik.

Here we restrict ourselves to the case qii = −1 for all i ∈ S, i.e. to the case of equal and
homogeneous jump rates. Let T (t) be the number of jumps up to time t and Yn for n ∈ N0 be
the state of X after the nth jump. Then T (t) is Poisson distributed with parameter t and Y is
a Markov chain with transition matrix

πij =

{
qij , if i 6= j, and
0 else.

Now consider two irreducible Markov chains X0 and X1 with different transition rates q0

and q1. Our task is to observe one path and to determine which transition mechanism gener-
ated this path.

Distinguishing two non-equivalent Markov chains is easy: as soon as a transition occurs,
which is only possible for one chain but not for the other, we have identified the transition
mechanism with probability one. So here we assume that the processes are equivalent, i.e. we
consider the case q0

ij > 0⇔ q1
ij > 0.

Again we consider the Bayes risk

B(t) =
1
2
P 0
t

(dP 1
t

dP 0
t

≥ 1
)

+
1
2
P 1
t

(dP 1
t

dP 0
t

≤ 1
)
, (6.8)

where Pϑt is the distribution of the path Xϑ
s

∣∣
0≤s≤t. We want to calculate the exponential

decay rate limt→∞
1
t logB(t). Using lemma 2.2 we can reduce this problem to calculation the

rates for the individual terms in the sum (6.8), as we did in (6.3).
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Because the processes have coinciding jump rates, the whole information about ϑ is con-
tained in the transition frequencies between the different states. Thus define the empirical pair
measure m̂n by m̂n

ij = 1
n

∑n
k=1 1{(i,j)}(Yk−1, Yk) for all i, j ∈ S. Then we have

dP 1
t

dP 0
t

=
π1
Y0Y1

π1
Y1Y2
· · ·π1

YN(t)−1YN(t)

π0
Y0Y1

π0
Y1Y2
· · ·π0

YN(t)−1YN(t)

=
∏
i,j∈S

(π1
ij

π0
ij

)N(t)·m̂N(t)
ij

,

where we use the convention (0/0)0 = 1. Defining

A1 =
{
a ∈ RS×S

∣∣ ∑
i,j

aij log(π1
ij/π

0
ij) ≤ 0

}
we can express the probabilities from (6.8) as

P 0
t

(dP 1
t

dP 0
t

≥ 1
)

= P 0
t

(∑
i,j∈S

m̂
N(t)
ij log

π1
ij

π0
ij

≥ 0
)

= P 0
t

(
m̂N(t) ∈ A1

)
.

Because the jumps of the embedded Markov chain Y are independent of the jumping
times, and because N(t) is Poisson distributed, we find

P 0
t

(dP 1
t

dP 0
t

≥ 1
)

=
∞∑
n=0

P
(
N(t) = n

)
P 0
(
m̂n ∈ A1

)
=
∞∑
n=0

e−t
tn

n!
P 0
(
m̂n ∈ A1

)
.

From Peter Scheffel’s thesis [Sch97] we know the exponential rate for the separation of two
Markov chains. It can be expressed by the spectral radius ρ (i.e. by the maximum of the
absolute values of the eigenvalues) of the matrices π(λ) with π(λ)

i,j = (π1
ij)

λ(π0
ij)

(1−λ) for all
λ ∈ [0; 1]. For irreducible, equivalent Markov chains the following result holds true:

lim
n→∞

1
n

logP 0
(
m̂n ∈ A1

)
= log inf

0<λ<1
ρ(π(λ)).

With the help of the following elementary lemma we can transfer this result to our situation.

Lemma 6.2. Let (an) be a sequence of positive real numbers. Then

lim inf
t→∞

1
t

log
∞∑
n=1

e−t
tn

n!
an ≥ exp

(
lim inf
n→∞

1
n

log an
)
− 1

and

lim sup
t→∞

1
t

log
∞∑
n=1

e−t
tn

n!
an ≤ exp

(
lim sup
n→∞

1
n

log an
)
− 1.

Proof. According to Stirling’s formula we have

n! ∼
√

2π
nn+1/2

en
,

where ∼ indicates, that the quotient of both sides converges to 1 as n→∞. Thus we get

e−t
tn

n!
an ∼

e−ttnen

nn
an√
2πn

= exp
(
−t− n log n+ n log t+ n+ log

an√
2πn

)
= exp

(
t
(
−1− n

t
log

n

t
+
n

t
+
n

t
cn
))

(6.9)
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where
cn =

1
n

log
an√
2πn

.

Here the quotient of both sides does not depend on t, i.e. the convergence for n → ∞ is
uniform in t.

Now I want to express the right hand side as a function of n/t. In order to do so define the
function g by

gc(x) = −1− x log x+ x+ x · c

for all x > 0. This function is monotonically increasing in c. We will use it to get bounds
on (6.9) in the situation when the sequence (cn)n∈N is bounded. Since

g′c(x) = − log x− x

x
+ 1 + c = c− log x,

the derivative g′c is strictly decreasing with a zero at x = ec. Thus gc attains its global max-
imum at the point ec. The value of the maximum is

gc(ec) = −1− ec log ec + ec + ec · c = ec − 1.

Now let a = lim infn→∞ 1
n log an and ε > 0. Then there is an N ∈ N with

1
n

log
an√
2πn

> a− ε for all n ≥ N.

Because lemma 2.2 only applies to finite sums, we will split the infinite sum from the claim
into the summands for n = 1, 2, . . . , N − 1 and the remaining tail. For n < N we find

lim
t→∞

1
t

log e−t
tn

n!
an = −1 + lim

t→∞

n

t
log t+ lim

t→∞

1
t

log
an
n!

= −1 + 0 + 0 = −1

and with nt = bea−ε · tc we conclude for the tail

lim inf
t→∞

1
t

log
∞∑
n=N

e−t
tn

n!
an

≥ lim inf
t→∞

1
t

log
(
e−t

tnt

nt!
ant

)
= lim inf

t→∞

1
t

(
t
(
−1− nt

t
log

nt
t

+
nt
t

+
nt
t

1
nt

log
ant√
2πnt

))
≥ lim inf

t→∞
ga−ε

(
nt/t

)
= ga−ε

(
ea−ε

)
= ea−ε − 1 for all ε > 0

i.e.

lim inf
t→∞

1
t

log
∞∑
n=N

e−t
tn

n!
an ≥ ea − 1.

Lemma 2.2 gives now the result. Because of ea−1 > −1 the first N−1 terms are not important
and the rate is determined by the tail.

Now let b = lim supn→∞
1
n log an and ε > 0. Then there is an N ∈ N with

1
n

log
ann

2

√
2πn

< b+ ε for all n ≥ N .

For the upper bound we have to consider all terms in the tail: multiplying the numerator and
denominator of equation (6.9) with n2 shows, that one can choose N large to obtain

e−t
tn

n!
an ≤

1
n2

exp
(
t
(
−1− n

t
log

n

t
+
n

t
+
n

t

1
n

log
ann

2

√
2πn

))
· (1 + ε)
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for all n ≥ N . (Instead of 1/n2 we could have chosen any other summable sequence.) Then we
have

lim sup
t→∞

1
t

log
∞∑
n=N

e−t
tn

n!
an

≤ lim sup
t→∞

1
t

log
∞∑
n=N

1
n2

exp
(
tgb+ε(n/t)

)
(1 + ε)

≤ lim sup
t→∞

1
t

log
(( ∞∑
n=N

1
n2

)
exp
(
tgb+ε(eb+ε)

)
(1 + ε)

)
= eb+ε − 1 for all ε > 0,

i.e.

lim sup
t→∞

1
t

log
∞∑
n=N

e−t
tn

n!
an ≤ eb − 1.

Using lemma 2.2 again, we also get the second part of the claim. (qed)

With the help of the lemma we get the main result of this section.

Theorem 6.3. Let X0, X1 be two irreducible, equivalent continuous time Markov chains
with finite state space S and generators q0, q1 ∈ RS×S. Further assume qϑii = −1 for all
i ∈ S. For λ ∈ [0; 1] let the matrix π(λ) be defined as above and let ρ denote the spectral
radius. Then the Bayes risk B(t) for the separation of X0 and X1 has exponential decay rate

lim
t→∞

1
t

logB(t) = inf
0<λ<1

ρ(π(λ))− 1.

Proof. Substituting Peter Scheffel’s result for Markov chains into lemma 6.2 gives

lim
t→∞

1
t

logP 0
t

(dP 1
t

dP 0
t

≥ 1
)

= exp
(

log inf
0<λ<1

ρ(π(λ))
)
− 1

= inf
0<λ<1

ρ(π(λ))− 1.

Analogous one also gets

lim
t→∞

1
t

logP 1
t

(dP 1
t

dP 0
t

≤ 1
)

= exp
(

log inf
0<λ<1

ρ(π(λ))
)
− 1

= inf
0<λ<1

ρ(π(λ))− 1.

Using lemma 2.2 finished the proof. (qed)

First notice that, in contrast to the Markov chain case, the rate cannot drop below −1. On
a closer look this is not surprising. As we saw in the proof of lemma 6.2, the value −1 is just
the exponential rate for the event, that the process has no jump (or at most N jumps) up to
time t. In this case of course we cannot gather any information to distinguish between the two
processes.

Thus the situation is as follows: when the processes are very similar, then the rate ρ for the
separation of the embedded Markov chains is close to 0 and the rate for the continuous time
case is eρ − 1 ≈ ρ, i.e. it is mostly determined by the transition mechanism. In the case of very
different Markov chains, on the other hand, ρ is significantly smaller then 0 and for continuous
time we get the rate eρ − 1 ≈ −1. Here the rate is mainly determined by the jump mechanism.
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Figure 6.3: The diagram shows one path of a continuous time Markov chain, generated by the
transition mechanism from example 6.2. The question is, whether the process has generator q0

or q1.

Example 6.2. This example demonstrates, that given the transition matrices it is easy
to explicitly calculate the exponential decay rates for the Bayes risk. Consider the transition
matrices

π1 =

 0 1/3 2/3
2/3 0 1/3
1/3 2/3 0


and

π0 =

 0 2/3 1/3
1/3 0 2/3
2/3 1/3 0

 .

Defining π(λ) as above we get the spectral radius ρ(π(λ)) = (21−λ + 2λ)/3 and consequently
inf0<λ<1 ρ(π(λ)) = ρ(π1/2) =

√
8/3. From Peter Scheffel’s result we get the decay rate of the

Bayes risk for the separation of the two corresponding discrete time Markov chains:

lim
n→∞

1
n

logB(λ, n) = log(
√

8/3) ≈ −0.059.

The generators for the corresponding continuous time Markov chains are qϑ = πϑ − I for
ϑ ∈ {0, 1}. Figure 6.3 illustrates one instantiation of this process. From theorem 6.3 we know
the rate for the separation of the continuous time Markov chains. It is

lim
t→∞

1
t

logB(t) = inf
0<λ<1

ρ(π(λ))− 1 =
√

8/3− 1 ≈ −0.057.
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Chapter 7

ComputationalExperiments

In the process of understanding complicated stochastic mechanisms computer simulations can
be a useful tool. The area of large deviation problems places special challenges here. Because
the whole point of large deviation problems is to handle extremely small probabilities, naive
approaches tend to fail here. Some solutions to the resulting problems are illustrated in the
following examples.

The easy way to estimate the probability of an event is to generate many random samples,
to count the number of occurrences of the event in question, and finally to use the law of
large numbers to estimate the probability with the relative frequency. This works well if the
probability is reasonably large. But if n is the maximum number of samples the computer will
generate in the time we are willing to wait, this method won’t work for probabilities smaller
than 1/n, because typically we would observe no occurrences of the event.

Another problem occurs when one tries to sample according to a conditional distribution.
The easy way to do this is to just sample from the full distribution, and to reject every value
which does not meet the condition. But then, again, this will only work if the probability is
not too small, because otherwise we will just have to reject every sample and get no values
which meet the condition.

This chapter presents some methods which are useful to overcome these problems.

7.1 The Euler-Maruyama Method

The basic method to numerically solve stochastic differential equations is the Euler-Maruyama␣method
or stochastic␣Euler ␣␣method. The method is, for example, described in [KP99]. We can use
this method to generate random paths from the solution of a SDE. The results of the sub-
sequent sections can then be used to estimate probabilities or to sample from conditional
distributions.

Consider the stochastic Differential equation

dXt = b(Xt, t) � dt+ σ(Xt, t) � dBt for 0 < t ≤ T (7.1)

X0 = z ∈ Rd,

where B is a d-dimensional Brownian motion, b : Rd × R+→ R
d is some drift function, and

σ : Rd ×R+→ Rd×n is the diffusion coefficient.
Solutions to this method can be approximated as follows: let N ∈ N and ∆t = T/N . Then

define

X̃0 = z

and iteratively

X̃n = X̃n−1 + b
(
X̃n−1, (n− 1)∆t

)
·∆t+ σ

(
X̃n−1, (n− 1)∆t

)
ξn ·
√

∆t

85
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for n = 1, . . . , N , where ξ1, . . . , ξN are d-dimensional, i.i.d. standard normal random variables.
Then the distribution of X̃0, X̃1, . . . , X̃N is an approximation for the distribution of the values
X0, X1·∆t, . . . , XN ·∆t.

One of the basic results about this method is the following theorem, which is a direct
consequence of theorem 10.2.2 from [KP99].

Theorem 7.1. Let X be a solution of (7.1) for a Brownian motion B. Define ξn =
(Bn∆t −B(n−1)∆t)/

√
∆t and let X̃n, n = 0, . . . , N be defined by the Euler-Maruyama method

with step size ∆t = T/N as above. Furthermore assume that∣∣b(x, t)− b(y, t)∣∣+
∣∣σ(x, t)− σ(y, t)

∣∣ ≤ K1|x− y|∣∣b(x, t)∣∣+
∣∣σ(x, t)

∣∣ ≤ K2

(
1 + |x|

)∣∣b(x, s)− b(x, t)∣∣+
∣∣σ(x, s)− σ(x, t)

∣∣ ≤ K3

(
1 + |x|

)
|s− t|1/2

for all x, y ∈ Rd and all s, t ∈ [0;T ], where the constants K1, K2, and K3 do not depend
on N . Then there is a constant K4, which is also independent of N , such that the Euler
approximation X̃ satisfies

E
(
|XT − X̃N |

)
≤ K4∆t1/2.

The theorem shows, that the Euler-Maruyama method gives a pathwise approximation to
the solution. The expected error goes to zero with order 0.5.

Example 7.1. For the Ornstein-Uhlenbeck process with parameter α we have b(x, t) =
−αx and σ(x, t) = 1 for all x ∈ R, t ≥ 0. The conditions of the theorem are satisfied for
K1 = α, K2 = max(1, α) and K3 = 0, so the Euler-Maruyama method will converge pathwise.

The result of a numerical simulation with ∆t = 0.005 is shown in figure 3.1 (page 24).

7.2 Importance Sampling

Importance Sampling is a variation of Monte-Carlo sampling, where we use some knowledge
about the integrated function to reduce the variance of the estimate. This is useful, because
small variance means small errors in the estimate. The basics of this method are explained
in [KW86].

Assume that X,X1, X2, . . . is an i.i.d. sequence of random variables and f is a measurable
function. Basic Monte-Carlo integration uses the law of large numbers in the form of

1
n

n∑
k=1

f(Xk) −→ E
(
f(X)

)
. (7.2)

The sum of the left hand side is used as an approximation for the expectation on the right
hand side. The speed of convergence is determined by the variance of the left-hand side:

Var
( 1
n

n∑
k=1

f(Xk)
)

=
1
n

Var
(
f(X)

)
. (7.3)

Now let Y1, Y2, . . . be another sequence of i.i.d. random variables, such that the distribution
of Yk has a density g with respect to the distribution of X:

g =
dL(Yk)
dL(X)

for all k ∈ N.
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Then the law of large numbers gives

1
n

n∑
k=1

f(Yk)
g(Yk)

−→ E
(f(Y1)
g(Y1)

)
(7.4)

=
∫
f(y)
g(y)

g(y)dL(X)(y)

= E
(
f(X)

)
(7.5)

for n → ∞. Again, the sum of the left hand side can be used as an approximation for the
expectation on the right hand side. The variance of f(Yk)/g(Yk) is small, if f and g are ap-
proximately proportional to each other. The boundary case is

g(y) =
f(y)

E
(
f(X)

) .
Then all the information about E

(
f(X)

)
is already contained in g and

f(Yk)
g(Yk)

= E
(
f(X)

)
is constant for all k ∈ N.

Of course this trick does not change the order of the method. The variance of the estimate
is

Var
( 1
n

n∑
k=1

f(Yk)
g(Yk)

)
=

1
n

Var
(f(Y1)
g(Y1)

)
, (7.6)

i.e. the method is still of order 1/
√
n, but sometimes one can choose a function g to obtain a

much better constant in the variance.

We are interested in estimating the probability of the event {X ∈ A} for a measurable
set A, i.e. in the case f = 1A. Here the Monte-Carlo method (7.2) becomes

1
n

n∑
k=1

1A(Xk) −→ P (X ∈ A)

and the variance (7.3) for this estimate is

σ2
MC = Var

( 1
n

n∑
k=1

1A(Xk)
)

=
1
n

(
P (A)− P (A)2

)
.

To make importance sampling useful for P (X ∈ A) ≈ 0, we choose random variables Yk
with P (Yk ∈ A)� P (X ∈ A). The importance sampling method (7.4) is

1
n

n∑
k=1

1A(Yk)
g(Yk)

−→ P (X ∈ A) for n→∞

and the corresponding variance from (7.6) becomes

σ2
Imp = Var

( 1
n

n∑
k=1

1A(Yk)
g(Yk)

)
=

1
n

Var
(1A(Yk)
g(Yk)

)
=

1
n

(
E
(1A(X)
g(X)

)
− P (A)2

)
.

The ratio of the variances for the importance sampling method and the Monte-Carlo
method is

σ2
Imp

σ2
MC

=
E
( 1A(X)
g(X)

)
− P (A)2

P (A)− P (A)2
.

If g is large on A this ratio becomes small, i.e. in these cases the estimate from the importance
sampling method has a better variance.
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Figure 7.1: This figure illustrates the variance reduction, which can be achieved by deploying
importance sampling. In the upper pictures we estimate the probability that a Brownian motion
exceeds the level 3 before time 1 by generating a sample of 10000 Brownian paths, sampled with
a step size of DT = 0.001, and counting how many of these reach a value greater than 3. The
upper picture gives the histogram for the distribution of 2500 estimates generated in this way.
The lower picture gives the histogram for 2500 estimates obtained by the importance sampling
method from example 7.2. Again each estimate is calculated from a sample of 10000 paths, but
one can see that the estimates obtained by importance sampling are much better concentrated
around the theoretical value 2.69 · 10−3.

Example 7.2. To test the importance sampling method we try to use it to estimate the
probability, that a Brownian motion exceeds the level 3 before time 1. We define

A =
{
ω : [0; 1]→ R

∣∣ sup
0≤t≤1

ωt > 3
}
.

From the reflection principle for a Brownian Motion X we know the exact value of this prob-
ability:

P (X ∈ A) = P
(

sup
0≤t≤1

Xt > 3
)

= 2P (X1 > 3) = 0.00269. . . .

For the process Y we can use Brownian Motion with a constant drift, i.e. Yt = Xt + bt.
From chapter 1 we know the density

g(ω) =
dL(Y )
dL(X)

(ω) = exp(b · ωt − b2/2).

The result of a numerical simulation is displayed in figure 7.1.

7.3 The Rejection Method

The rejection method is a technique, which can be used to generate samples according to a
distribution where the density with respect to some original measure is given. Further details
can be found in [Knu81]. The book [PTV92] contains a sample implementation.
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Theorem 7.2 (rejection method). Let f , g be probability densities on some measurable
space (X ,F , µ) and λ ≥ 1 be a number with λf ≥ g. Let (Xn)n∈N be an i.i.d. sequence of
random variables with values in X and density f , and let (Un)n∈N be an i.i.d. sequence of
random variables, uniformly distributed on the interval [0; 1], independently of the (Xn).
Define N = min{n ∈ N | λUnf(Xn) ≤ g(Xn) }.Then the distribution of XN has density g
on (X ,F , µ).

Thus the algorithm works as follows. Assume that we want to generate random values
according to a probability density g. We first have to find another density f and a number
λ ≥ 1 with λf ≥ g, where we can already generate random values according to the probability
density f . To sample for the density g one has to perform the following steps.
step 1: generate a random value X according to f
step 2: generate a random value U , uniformly distributed on [0; 1]
step 3: if U · λf(X) > g(X) go back to step 1
step 4: emit X

Because it gives some insights I reproduce the proof of the theorem here.

Proof. Given the value of Xn, it is accepted with probability g(Xn)/λf(Xn). So the total
probability that Xn is accepted, is

P
(
λUnf(Xn) ≤ g(Xn)

)
=
∫
X

g(x)
λf(x)

f(x) dµ(x) = 1/λ.

The value N is geometrically distributed with parameter 1/λ and for every set A ∈ F and
n ∈ N we get

P (Xn ∈ A,N = n) =
∫
A

(
1− 1

λ

)k−1 g(x)
λf(x)

f(x) dµ(x)

=
(

1− 1
λ

)k−1 1
λ
·
∫
A

g(x) dµ(x).

Summation over n gives

P (XN ∈ A) =
∑
n∈N

P (Xn ∈ A,N = n) =
∫
A

g(x) dµ(x).

This proves the claim. (qed)

If we want to use this method to simulate a conditional distribution P ( · | A) we proceed
as follows. We choose some density ϕ where A has a high enough probability wrt. ϕ and where
we can generate random values which are distributed according to ϕ. For the algorithm we
choose the densities f and g with

f(x) =
ϕ(x)1A(x)∫
A
ϕdP

and g(x) =
1A(x)
P (A)

.

Because A has a high enough probability wrt. ϕ we can get samples according to f from the
naive algorithm. The density g is the density of the conditional distribution which we are
interested in. For λ we can choose

λ = ess sup
x∈A

g(x)/f(x) =

∫
A
ϕdP

P (A) ess infx∈A ϕ(x)
.

One good thing about the algorithm is, that we do not need to know the probabilities P (A)
and

∫
A
ϕdP in order to apply it: the condition

λUf(X) ≤ g(X)
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for accepting a value becomes
Uϕ(X) ≤ ess inf

x∈A
ϕ(x) (7.7)

here.
To generate one random value which is distributed according to f , we need in the mean

1/
∫
A
ϕdP values which are distributed according to ϕ. From the proof above we know that in

the theorem the number N of necessary input sample values is geometrically distributed with
parameter 1/λ. The mean value is E(N) = λ. So in the mean we have to generate

m =
1∫

A
ϕdP

· λ =
1

P (A) ess infx∈A ϕ(x)
(7.8)

values distributed according to ϕ in order to get one value distributed according to g. If ϕ is
concentrated near A this can be much better than the value 1/P (A) from the naive algorithm.

Example 7.3. We can use the rejection method to simulate a Brownian Motion on the
time interval [0; t] conditioned on the event that

∫ t
0
B2
s ds < ε for a small value of ε and

|Bt| ≤ c for some c > 0.
Because the integral condition is only satisfied for paths which stay most of the time near

the origin, we use an Ornstein-Uhlenbeck process to sample the original random paths. From
formula (3.3) we know that the density of an one-dimensional Ornstein-Uhlenbeck process
with parameter α > 0 is

ϕt(ω) = exp
(α

2
(t− ω2

t )− α2

2

∫ t

0

ω2
s ds

)
for all ω ∈ C([0; t],R). On the set

Aε =
{
ω ∈ C([0; t],R)

∣∣∣ ∫ t

0

ω2
s ds < ε, |ωt| ≤ c

}
we find

ess inf
x∈Aε

ϕt(x) = exp
(α

2
(t− c2)− α2

2
ε
)
.

Thus from condition (7.7) we conclude, that we should accept a path of the Ornstein-Uhlen-
beck process, if it is in Aε and additionally satisfies

U exp
(α

2
(t−X2

t )− α2

2

∫ t

0

X2
s ds

)
≤ exp

(α
2

(t− c2)− α2

2
ε
)

or equivalently

U ≤ exp
(
−α

2
(c2 −X2

t )− α2

2
(
ε−

∫ t

0

X2
s ds

))
.

We want to keep the mean number of samples used from equation 7.8 small. Assume c2 <
t, now. Because of

m =
1

P (Aε) ess infx∈Aε ϕ(x)

=
1

P (Aε)
exp
(α2

2
ε− α

2
(t− c2)

)
=

1
P (Aε)

exp
((
α
√
ε/2− (t− c2)/

√
8ε
)2

−
(
t− c2

)2
/8ε
)

we will then choose

α =
t− c2√

8ε
·
√

2
ε

=
t− c2

2ε
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Figure 7.2: Sample path of a Brownian motion on the interval [0; 1], conditioned on the event
that

∫ 1

0
B2
s ds ≤ 0.01 and |B1| ≤ 0.5. This figure was created with the rejection method described

in example 7.3.

to get the optimal mean number of samples used to produce one path from the conditioned
Brownian motion, which is

m∗(ε) =
exp
(
−(t− c2)2/8ε

)
P (Aε)

.

Using lemma 4.3 we can conclude

lim
ε↓0

ε logm∗(ε) = −
(
t− c2

)2
/8− lim

ε↓0
ε logP (Aε) =

t2 − (t− c2)2

8
.

So the number of necessary samples still grows exponentially for ε ↓ 0, but with a better
exponential rate than the original t2/8.

To illustrate the effect we can try this with t = 1, c = 0.5, and ε = 0.01. I simulated
1000000 path with step size ∆t = 10−5 each. The results are summarised in the following
table. One of the resulting paths is shown in figure 7.2.

naive method rejection method
input samples 1000000 1000000
samples according to f — 130813
accepted samples 0 914

So this is one of the cases where the rejection method works quite well, but the naive ap-
proach fails.

7.4 Sampling Bridges

Using the Euler-Maruyama from section 7.1 works well for ordinary stochastic differential
equations, but it does not allow to sample a process conditioned on a given value for the end
point. In order to simulate the process conditioned on the end point (a bridge), we need more
sophisticated methods. This section describes such a method.

The basic principle used here is the Langevin␣method. Given a probability distribution µ
with density ϕ on Rd, we consider the stochastic differential equation

dZt = grad logϕ(Zt) � dt+
√

2 � dBt. (7.9)

From theorem 1.4 we know, that this process has a stationary distribution µ. Assuming er-
godicity for Z we can approximate the distribution µ by simulating a solution of (7.9) and
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taking Zt for large t, and we can approximate expectations
∫
f dµ by numerically evaluating∫ t

0
f(Zs) ds for large t.
For constants c ∈ R we have grad log(cϕ) = grad(log c + logϕ) = grad logϕ, i.e. we can

determine the drift for the SDE (7.9) even if we only know the density ϕ up to a constant.
Now assume we want to simulate solutions of

dXt = f(Xt) � dt+ dBt for 0 < t ≤ T
X0 = a ∈ R,

(7.10)

where B is a 1-dimensional Brownian motion and f : R → R is some drift function, but
conditioned on XT = b ∈ R. We can get an approximation (X̃0, X̃1, . . . , X̃N ) ∈ RN+1 of the
unconditioned solution via Euler method. X̃ = (X̃1, . . . , X̃N ) is a random vector in RN with
density

ϕ(x1, . . . , xN ) =
1

(2π∆t)N/2
exp
(
−

N∑
n=1

(
xn − xn−1 − f(xn−1)∆t

)2
2∆t

)
where we use x0 = a as an abbreviation. The conditional density of the vector (X̃1, . . . , X̃N−1),
conditioned on X̃N = b is then

ϕ(x1, . . . , xN−1|xN = b) = c exp
(
−

N∑
n=1

(
xn − xn−1 − f(xn−1)∆t

)2
2∆t

)
where on the right hand side x0 = a, xN = b, and c is the normalising constant, which
makes the function a probability density again. We want to apply the Langevin method to this
probability density.

Define

I(x1, . . . , xN−1) =
N∑
n=1

(
xn − xn−1 − f(xn−1)∆t

)2
2∆t

,

then the drift for the Langevin equation is grad logϕ( · |xN = b) = − grad I and we get the
Langevin equation

dZ̃s = −∇I(Z̃s) � ds+
√

2dB̃s.

For a (N − 1)-dimensional Brownian motion B̃. I use s for the time in the Langevin equation
here to distinguish it from the time t in the SDE (7.10).

Because here we are only interested in the stationary distribution of this SDE, we can
freely rescale time in the Langevin equation. After the s-time transformation Zs = Z̃s/∆t and
Bs = B̃s/∆t we get the SDE

dZs = − 1
∆t
∇I(Zs) � ds+

√
2

∆t
dBs. (7.11)

where B is another (N − 1)-dimensional Brownian motion. A direct calculation gives

− 1
∆t

∂nI(x) =
xn+1 − 2xn + xn−1

∆t2

− f(xn)f ′(xn)

− f(xn)− f(xn−1)
∆t

+ f ′(xn)
xn+1 − xn

∆t
(7.12)

where we again use the abbreviations x0 = a and xN = b. The reason for rescaling the s-
time is, that now the first term on the right hand side is a discretized version of the Laplace
operator and one could hope that for N → ∞ the (N − 1)-dimensional SDE (7.11) converges
to a stochastic partial differential equation on R+× [0;T ].

The method to simulate a solution X of the SDE (7.9) conditioned on the end point
XT works now as follows. First calculate the corresponding drift for the Langevin equation
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Figure 7.3: This figure shows a path of an Ornstein-Uhlenbeck process with parameter α = 5
and start in 2, conditioned on X1 = 5. The simulation was done using the Langevin method
from example 7.4. The simulation parameters are N = 1000, ∆t = 0.001, and ∆s = 5 · 10−7.

using formula (7.12). Then use this drift to simulate a solution (Zs) of (7.11) using the
Euler-Maruyama method. The initial value Z0 is arbitrary. One could, for example, use lin-
ear interpolation between the a and b. Now get Zs for a large time s. Then the components
Zs,1, . . . , Zs,N−1 are an approximation for X1·∆t, . . . , X(N−1)·DT . Of course the problem with
this method is to find good values of s.

Note that quite a small step size in s-direction is necessary, in order to keep the method
stable. If the running time of the program is an important factor, then methods like the impli-
cit Euler-Maruyama method or the Crank-Nicholson scheme, which allow greater step sizes in
s-direction might be advantageous.

Example 7.4 (Ornstein-Uhlenbeck bridges). We can use the method described in this
section to simulate paths from the Ornstein-Uhlenbeck process with given initial and final
values.

Consider the SDE
dXt = −αXt � dt+ dBt for 0 < t < 1

with α > 0 and boundary conditions X0 = a and X1 = b. Then we have f(x) = −αx and
equation (7.12) becomes

− 1
∆t

∂nI(x) =
xn+1 − 2xn + xn−1

∆t2

− α2xn

+ α
−xn+1 + 2xn − xn−1

∆t

= (1− α∆t)
xn+1 − 2xn + xn−1

∆t2
− α2xn.

Figure 7.3 shows the result of a numerical simulation, using this method.
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ListofSymbols

1A the indicator function of the set A, i.e. 1A(x) = 1 if x ∈ A and 1A(x) = 0 else
(A) the indicator function of the set A, used if A is an complicated expression (page 62)
Bδ(x) the open ball with radius δ around x
B(λ, t) the Bayes risk for the separation of two processes, observed until time t, for a priory

distribution λ (p. 75)
B(Rd) the Borel-σ-algebra on Rd

C0([0; t],Rd) the space of all continuous functions from the interval [0; t] into Rd (page 20)
Exp(λ) the exponential distribution with parameter λ
Id the d× d identity matrix
Kr the closed ball with radius r around the origin: Kr = {x | |x| ≤ r }.
λd the d-dimensional Lebesgue measure (p. 16)
N the natural numbers 1, 2, 3, . . .
N0 the natural numbers including the zero: 0, 1, 2, . . .
N (µ, σ2) the Gaussian distribution with expectation µ and variance σ2

Prob(Rd) the space of all probability measures on Rd

R+ the positive real numbers, i.e. R+ = [0;∞)
ρ(A) the spectral radius of the matrix A, i.e. the maximum of the absolute values of the ei-

genvalues of A
s ∧ t the minimum of the numbers s and t
s ∨ t the maximum of the numbers s and t
V ba (f) the total variation of the function f between a and b (p. 69)
W the Wiener measure on the path space
Wε the law of scaled down Brownian motion (p. 20)
bxc the largest integer smaller or equal to the real number x
dxe the smallest integer greater or equal to the real number x
x+, x− the positive part resp. negative part of x ∈ R. This is defined as x+ = max(0, x) and

x− = max(0,−x).
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Anderson’s inequality 31

Bayes risk 75
— for constant drift 76
— for Markov chains 82
— for OU processes 78
beautiful proof 14
bridges 91

Cameron-Martin-Formula 25
continuity set 19
contraction principle 15

diffusion coefficient 7
diffusion process 7
—, density of 9
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empirical distribution 19
Euler-Lagrange equations 42
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