MCMC Methods on Path Space

Jochen Voss

University of Leeds, Statistics Department

9th April 2009

Joint work with Martin Hairer and Andrew Stuart (University of Warwick)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

[Bayesian Inference for Signal Processing](#page-2-0)

[Sampling on Path Space](#page-12-0)

[Conclusions](#page-18-0)

1. Bayesian Inference for Signal Processing

イロン イ部ン イ君ン イ君ン

 \equiv 990

Many problems can be formulated in a Bayesian framework:

- \triangleright signal processing/filtering (e.g. unknown parameters),
- \triangleright data assimilation (e.g. unknown initial condition),

^I . . .

 \triangleright the oil-reservoir problem from David White's talk later today,

KORK ERKER ADE YOUR

We consider the following situation:

- \triangleright we are given the values of observations y
- \triangleright we want to generate samples from the **posterior** distribution μ_v of μ , *i.e.* from the conditional distribution of u given the observations y.

In this talk we assume that the posterior μ_V is of the form

$$
\frac{d\mu_{y}}{d\mu_{0}}(u)=\frac{1}{Z}\exp(-\Phi(u; y))
$$

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A$

 2990

where μ_0 is some Gaussian reference measure.

Example 1: Sampling the initial condition

Assume the following situation:

ighthroor the signal x solves an ODE in \mathbb{R}^d :

$$
\frac{dx(t)}{dt}=f(x(t)), \qquad x(0)=u \sim \nu.
$$

 \triangleright we have discrete, noisy observations:

$$
y_k = g(x(t_k)) + \eta_k \qquad \forall k = 1, \ldots, K
$$

KORK ERKER ADE YOUR

If u and n_k are Gaussian, this example fits into the given framework: we have

$$
y \sim \mathcal{N}(\mathcal{G}(u), \Sigma)
$$

and thus . . .

. . . the density of observations is

$$
p(y|u) \propto \exp\left(-\frac{1}{2}|\mathcal{G}(u)-y|_{\Sigma^{-1}}^2\right) =: \exp(-\Phi(u; y)).
$$

We can use Bayes' rule to get

$$
p(u|y) = \frac{p(y|u)p(u)}{p(y)} \propto p(y|u)p(u).
$$

Using the prior $p(u)$ du aus the reference meassure μ_0 we get the posterior density

$$
\frac{d\mu_{y}}{d\mu_{0}}(u)=\exp(-\Phi(u; y)).
$$

 $(1 - 4)$ $(1 -$

 \equiv 990

Example: Lorenz system. Consider

$$
\frac{dx(t)}{dt}=f(x(t)), \qquad f(x)=\begin{pmatrix} \sigma(x_2-x_1) \\ \rho x_1-x_2-x_1x_3 \\ x_1x_2-\beta x_3 \end{pmatrix}
$$

with

$$
x(0)=u\sim\mathcal{N}(\bar{u},1).
$$

The posterior density

$$
\frac{d\mu_{y}}{d\mu_{0}}(u)=\exp(-\Phi(u; y)).
$$

 4 ロ) 4 \overline{r}) 4 \overline{z}) 4 \overline{z})

 2990

B

is easily evaluated but may be difficult to sample

 299

Example 2: Model Error

Assume the following situation:

ighthroor the signal x solves an ODE in \mathbb{R}^d :

$$
\frac{dx(t)}{dt}=f(x(t))+v(t), \qquad x(0)=u\sim \nu,
$$

where ν is a stationary stochastic process.

 \triangleright we have discrete, noisy observations:

$$
y_k = g\big(x(t_k)\big) + \eta_k \qquad \forall k = 1, \ldots, K
$$

KORK ERKER ADE YOUR

Again, we want to sample from the posterior, i.e. from the conditional distribution of $(u,v)\in \mathbb{R}^d\times C\big([0,\,T],\mathbb{R}^d\big)$ given the observations V_1, \ldots, V_K .

As before, the values $x(t_1), \ldots, x(t_k)$ are completely determined by u, v :

$$
p(y|u, v) \propto \exp\left(-\frac{1}{2}|\mathcal{G}(u, v) - y|_{\Sigma^{-1}}^2\right) =: \exp(-\Phi(u, v; y)).
$$

Again, we can use the prior distribution as the reference measure μ_0 to get the posterior density

$$
\frac{d\mu_{y}}{d\mu_{0}}(u,v)=\exp(-\Phi(u,v;y))
$$

on $\mathbb{R}^d \times C([0, T], \mathbb{R}^d)$.

Sampling from the posterior is now an infinite dimensional problem, but the presence of the model error term v makes the distribution a lot smoother. Sometimes this may be advantageous!

KORKARA KERKER SAGA

 299

2. Sampling on Path Space

イロン イ部ン イ君ン イ君ンシ

 \equiv 990

We have seen how posterior distributions on path space may arise.

Question. How to sample from these infinite dimensional distributions?

There are several generic methods available.

- \triangleright Langevin sampling: construct a continuous time stochastic process with values in $\mathcal{C}([0,T],\mathbb{R}^d)$ which has the posterior as its stationary distribution.
- \triangleright Metropolis sampling: use a rejection algorithm to modify a discrete time Markov chain to have the required stationary distribution.

4 D > 4 P + 4 B + 4 B + B + 9 Q O

 \triangleright Combinations of both methods.

Langevin Sampling.

- \blacktriangleright Find a stochastic process u with values in $C\big([0,T], \mathbb{R}^d\big)$ whose stationary distribution coincides with the target distribution μ_{ν} . Typically, the process u will be given as the solution to a Stochastic Partial Differential Equation (SPDE).
- \triangleright Simulate this sampling SPDE on a computer.
- Assuming ergodicity, we can probe all statistical properties of μ using ergodic averages:

$$
\int_{C([0,T],\mathbb{R}^d)} \varphi(u) d\mu_{y}(u) = \lim_{S\to\infty} \frac{1}{S} \int_0^S \varphi(u(\tau)) d\tau.
$$

KORK ERKER ADE YOUR

Illustration: sampling Brownian bridges

The stochastic heat equation

$$
\partial_{\tau} u(\tau, t) = \partial_t^2 u(\tau, t) + \sqrt{2} \, \partial_{\tau} w(\tau, t)
$$

with Dirichlet boundary conditions

$$
u(\tau,0)=0,\qquad u(\tau,\,T)=0
$$

has the distribution of a Brownian bridge as its stationary distribution.

- \triangleright $\partial_{\tau} w$ is space-time white noise
- \triangleright *t* ∈ [0, *T*] is *physical time* ("space" of the SPDE, time of the Brownian bridge)
- $\triangleright \tau \in [0, \infty)$ is algorithmic time (time of the SPDE)

Adding a drift to the SPDE allows to sample from more interesting distributions.

Metropolis Sampling.

 \blacktriangleright let

Result. Let $P(u, dv)$ be the transition kernel of a Markov chain on $C([0, T], \mathbb{R}^d)$. Construct a new Markov chain $(u_n)_{n \in \mathbb{N}}$ as follows: for each $n > 1$

► construct a *proposal* $v_n \sim P(u_{n-1}, \cdot)$, and

$$
u_n = \begin{cases} v_n & \text{with probability } \alpha(u_{n-1}, v_n) \\ u_{n-1} & \text{else.} \end{cases}
$$

Then the Markov chain $(u_n)_{n\in\mathbb{N}}$ has stationary distribution μ_v .

Here the acceptance probability α is given by

$$
\alpha(u,v) = \min\Big(1, \frac{\mu_y(dv)P(v,du)}{\mu_y(du)P(u,dv)}(u,v)\Big).
$$

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Remarks.

- In The method only works if the measures $\mu_{\nu}(dv)P(v, du)$ and $\mu_v(du)P(u, dv)$ are equivalent so that the density in the construction of α exists.
- \triangleright Efficiency of the method depends on the average acceptance probabilities obtained. This can be controlled by the choice of the proposal distribution $P(u, dv)$.
- If the proposal distribution is symmetric, then

$$
\alpha(u, v) = \min\left(1, \frac{\mu_y(dv)P(v, du)}{\mu_y(du)P(u, dv)}(u, v)\right)
$$

$$
= \min\left(1, \exp(\Phi(v; y) - \Phi(u; y))\right)
$$

KORKAR KERKER E VOOR

 \triangleright Good proposals can be constructed by taking one step of a discretised Langevin equation.

3. Conclusions

K ロ K イロ K K モ K K モ K エ エ エ イ の Q Q Y

Conclusions

- \triangleright Many applied problems can be written as sampling problems on a function space.
- \blacktriangleright In some situations an infinite dimensional method may provide more regularity and thus may be easier to use.
- \triangleright There are various methods available to solve the resulting sampling problems.

KORK SERVER SHOPE