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Stochastic Burgers’ Equation



We consider the stochastic Burgers’ equation

∂tu = ν ∂2
xu − u∂xu + σ ∂tW ,

where x ∈ [0, 2π], t ≥ 0, the operator ∂2
x is equipped with periodic

boundary conditions, and ∂tW is space time white noise.

I u∂xu is a transport term (shifts right if u > 0 and left if u < 0).

I the ∂2
xu-term “smoothes” the solution

I ∂tW adds noise
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Since the noise W is very “rough”, we need to use the concept of mild
solutions.

Definition. A process u with values u(t) ∈ L2
(
[0, 2π],R

)
is a solution of

the stochastic Burgers’ equation, if

u(t) = e−tLu0 +

∫ t

0
e(t−s)LF

(
u(s)

)
ds +

∫ t

0
e(t−s)L dWs

for all t ≥ 0, where

I L = ∂2
x on L2

(
[0, 2π],R

)
with periodic boundary conditions

I F (u) = −u ∂xu
I W is a cylindrical Wiener process



One can prove that there exists a global mild solution in L2
(
[0, 2π],R

)
:

I Existence of local solutions follows from abstract theory.

I Existence of global solutions uses the fact that the non-linear drift
term can be written as u∂xu = ∂x(u2/2).

I The solution satisfies u(t) ∈ H1/2−ε for all ε > 0.





Discretising the Nonlinearity



To discretise u∂xu, we consider the approximating equation

duε(x , t) = ν ∂2
xuε(x , t) dt − uε(x , t)Dεuε(x , t) dt + dW (t),

where we define the approximate derivative Dε by

Dεu(x , t) =
u(x + aε, t)− u(x − bε, t)

(a + b)ε

for some a, b ≥ 0 with a + b > 0.

I In the absence of the noise term, one can see that this solution
converges to the exact solution as ε ↓ 0.

I For the stochastic equation, we will show that this is not always the
case (only for a = b).



Consider first the solution v to the stochastic heat equation

dv = ν ∂2
xv dt + dW (t).

Using the ansatz

v(t, x) =
∑
n∈Z

cn(t)
einx√

2π
,

it can be checked that the stationary solution is given by

v(t, x) =
∑
n 6=0

ξn(t)

2
√
νπin

einx + B(t)
1√
2π
,

where the ξn are complex-valued Ornstein-Uhlenbeck processes with
E|ξn(t)|2 = 1 and time constant νn2 that are independent, except for the
condition that ξ−n = ξ̄n.

We would expect v to have the same smoothness properties as u.



The derivative of v is then (formally)

∂xv(x) =
∑
n 6=0

ξn(t)

2
√
νπ

einx .

The ε-approximation to the derivative (as defined above) is

Dεv(x) =
∑
n 6=0

ξn(t)

2
√
νπ

einaε − e−inbε

in(a + b)ε
einx .

It is clear that the terms in approximate derivative are a good
approximation only up to n ≈ 1/ε.



Comparison of v∂xv and vDεv

I Since∫ 2π

0

e−i0x√
2π

v(x)∂xv(x) dx =
1√
2π

(v2

2
(2π)− v2

2
(0)
)

= 0,

the n = 0 mode of v∂xv vanishes.

I The n = 0 mode of vDεv can be found as

∑
k 6=0

ξk(t)

2
√
νπik

ξ−k(t)
(
e−ikaε − eikbε

)
2
√
νπi(−k)(a + b)ε

=
∑
k>0

|ξk(t)|2

2πνk

cos kbε− cos kaε

(a + b)εk

which does not vanish in general . . .



. . . Indeed, as ε→ 0, the expectation of the n = 0-mode∑
k>0

|ξk(t)|2

2πνk

cos kbε− cos kaε

(a + b)εk

converges to

1

2νπ

∫ ∞
0

cos bx − cos ax

(a + b)x2
dx =

1

4ν

b − a

b + a
,

which vanishes if and only if a = b.



Conjecture
As ε ↓ 0, the solution of the approximating equation

∂tuε = ν ∂2
xuε − uεDεuε + σ ∂tdW (t),

converges to the solution of

∂tu = ν ∂2
xu − u∂xu −

σ2

4ν

b − a

b + a
+ σ ∂tdW (t).



Simulations



We will “verify” the conjecture using a numerical simulation. In order to
do so, we . . .

I approximate space by{
∆x , 2∆x , . . . , (N − 1)∆x ,N∆x

}
where ∆x = 2π/N for some N ∈ N.

I approximate ∂2
x by

∂2
xu ≈

1

∆x2


−2 1 1

1 −2 1
. . .

. . .
. . .

1 −2 1
1 1 −2




u1

u2
...

un−1

un

 =: Lu



I approximate uDεu by (
uj
uj+a − uj−b
(a + b)∆x

)
j=1,...,N

where a, b ∈ {0, 1}.
I approximate dW by 1√

∆x
dB where B is an N-dimensional standard

Brownian motion.



The analysis we did above for ∂2
xu − uDεu can be repeated for the fully

space-discretised equation with drift Lu − uDεu.

I The eigenvectors of L are given by einx where n ∈ {1
2 , 1

1
2 , . . . ,N −

1
2}

and x is on the grid. The corresponding eigenvalues are

λn =
2 cos(n∆x − 1)

∆x2
.

I We can work out the evolution equation of the Fourier modes as
before to get the variances in stationarity.

I The same argument as above allows to compute the correction term
for the drift. Result: for a = 1 and b = 0, the additional drift term is
−σ2/4ν.



Time Discretisation
We use θ-method with θ = 1/2 to discretise time. Thus, we have

x (n+1) = x (n) +
1

σ2
L
(
θx (n+1) + (1− θ)x (n)

)
∆t

+ drift(x (n))∆t +

√
∆t

∆x
ξ(n+1).

Solving this for x (n+1) gives

(
I − θ∆t

σ2
L
)
x (n+1) =

(
I +

(1− θ)∆t

σ2
L
)
x (n)

+ drift(x (n))∆t +

√
∆t

∆x
ξ(n+1).
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Small noise/viscosity limit



We are interested in the equation

du = ε ∂2
xu dt − u∂xu dt +

√
ε dW

for ε� 1.

I For small ε the solution has “shocks” of width O(ε).

I In the limit ε = 0, the centred discretisation for the deterministic
equation is unstable.





Conjecture

∂tun = −u∂xu −
cσ2

4
, (1)

1. ∆x � ε: the solution to the finite difference approximation
converges to the viscosity solution of (1) where c ∈ {1, 0,−1}
depending on whether the discretisation is right-handed, centred, or
left-handed.

2. ε� ∆x �
√
ε: we expect the finite difference approximation to

converge to the solutions to (1) only up to the formation of the first
shock. After this, one expects to see the solution to become
unstable.

3.
√
ε� ∆x : we expect both the viscosity and the noise term to

become irrelevant, so that the solution behaves like the
corresponding approximation to the inviscid Burgers’ equation.
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Conclusion

I Finite difference discretisation cans converge to the wrong solution!

I Using the heuristic method presented here, it is sometimes possible
to guess the exact form of the error.

I There are various extension possible, e.g. more general
non-linearities of the form

∂tui = ν ∂2
xui +

∑
j

gij(u)∂xuj + σ ∂tWi

(done) and multiplicative noise (still to do).
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