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1. Bayesian Inference for Signal Processing



“signal” x ,
evolution depends
on u

“parameters“ u,
u ∼ ν, ν = prior

“observations” y ,
y ∼ p( · |u)

Many problems can be formulated in a Bayesian
framework:

I signal processing/filtering (e.g. unknown
parameters),

I data assimilation (e.g. unknown initial
condition),

I the oil-reservoir problem from David White’s
talk later today,

I . . .



“signal” x ,
evolution depends
on u

“parameters“ u,
u ∼ ν, ν = prior

“observations” y ,
y ∼ p( · |u)

We consider the following situation:

I we are given the values of observations y

I we want to generate samples from the
posterior distribution µy of u, i.e. from the
conditional distribution of u given the
observations y .

In this talk we assume that the posterior µy is of
the form

dµy
dµ0

(u) =
1

Z
exp
(
−Φ(u; y)

)
where µ0 is some Gaussian reference measure.



Example 1: Sampling the initial condition

Assume the following situation:

I the signal x solves an ODE in Rd :

dx(t)

dt
= f
(
x(t)

)
, x(0) = u ∼ ν.

I we have discrete, noisy observations:

yk = g
(
x(tk)

)
+ ηk ∀k = 1, . . . ,K

If u and ηk are Gaussian, this example fits into the given framework: we
have

y ∼ N
(
G(u),Σ

)
and thus . . .



. . . the density of observations is

p(y |u) ∝ exp
(
−1

2

∣∣G(u)− y
∣∣2
Σ−1

)
=: exp

(
−Φ(u; y)

)
.

We can use Bayes’ rule to get

p(u|y) =
p(y |u)p(u)

p(y)
∝ p(y |u)p(u).

Using the prior p(u) du aus the reference meassure µ0 we get the
posterior density

dµy
dµ0

(u) = exp
(
−Φ(u; y)

)
.



Example: Lorenz system. Consider

dx(t)

dt
= f
(
x(t)

)
, f (x) =

 σ(x2 − x1)
ρx1 − x2 − x1x3

x1x2 − βx3


with

x(0) = u ∼ N (ū, 1).

The posterior density

dµy
dµ0

(u) = exp
(
−Φ(u; y)

)
.

is easily evaluated but may be difficult to sample
from.
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Example 2: Model Error

Assume the following situation:

I the signal x solves an ODE in Rd :

dx(t)

dt
= f
(
x(t)

)
+ v(t), x(0) = u ∼ ν,

where v is a stationary stochastic process.

I we have discrete, noisy observations:

yk = g
(
x(tk)

)
+ ηk ∀k = 1, . . . ,K

Again, we want to sample from the posterior, i.e. from the conditional
distribution of (u, v) ∈ Rd × C

(
[0,T ],Rd

)
given the observations

y1, . . . , yK .



As before, the values x(t1), . . . , x(tk) are completely determined by u, v :

p(y |u, v) ∝ exp
(
−1

2

∣∣G(u, v)− y
∣∣2
Σ−1

)
=: exp

(
−Φ(u, v ; y)

)
.

Again, we can use the prior distribution as the reference measure µ0 to
get the posterior density

dµy
dµ0

(u, v) = exp
(
−Φ(u, v ; y)

)
on Rd × C

(
[0,T ],Rd

)
.

Sampling from the posterior is now an infinite dimensional problem, but
the presence of the model error term v makes the distribution a lot
smoother. Sometimes this may be advantageous!
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100

101

102

103

�

lo
g

d

�

y

d
u

(u
)



2. Sampling on Path Space



We have seen how posterior distributions on path space may arise.

Question. How to sample from these infinite dimensional distributions?

There are several generic methods available.

I Langevin sampling: construct a continuous time stochastic process
with values in C

(
[0,T ],Rd

)
which has the posterior as its stationary

distribution.

I Metropolis sampling: use a rejection algorithm to modify a discrete
time Markov chain to have the required stationary distribution.

I Combinations of both methods.



Langevin Sampling.

I Find a stochastic process u with values in C
(
[0,T ],Rd

)
whose

stationary distribution coincides with the target distribution µy .
Typically, the process u will be given as the solution to a
Stochastic Partial Differential Equation (SPDE).

I Simulate this sampling SPDE on a computer.

I Assuming ergodicity, we can probe all statistical properties of µ
using ergodic averages:∫

C
(

[0,T ],Rd
) ϕ(u) dµy (u) = lim

S→∞

1

S

∫ S

0
ϕ
(
u(τ)

)
dτ.



Illustration: sampling Brownian bridges

The stochastic heat equation

∂τu(τ, t) = ∂2
t u(τ, t) +

√
2 ∂τw(τ, t)

with Dirichlet boundary conditions

u(τ, 0) = 0, u(τ,T ) = 0

has the distribution of a Brownian bridge as its stationary
distribution.

I ∂τw is space-time white noise

I t ∈ [0,T ] is physical time (“space” of the SPDE,
time of the Brownian bridge)

I τ ∈ [0,∞) is algorithmic time (time of the SPDE)

Adding a drift to the SPDE allows to sample from more
interesting distributions.



Metropolis Sampling.

Result. Let P(u, dv) be the transition kernel of a Markov chain on
C
(
[0,T ],Rd

)
. Construct a new Markov chain (un)n∈N as follows: for

each n > 1

I construct a proposal vn ∼ P(un−1, · ), and

I let

un =

{
vn with probability α(un−1, vn)

un−1 else.

Then the Markov chain (un)n∈N has stationary distribution µy .

Here the acceptance probability α is given by

α(u, v) = min
(

1,
µy (dv)P(v , du)

µy (du)P(u, dv)
(u, v)

)
.



Remarks.

I The method only works if the measures µy (dv)P(v , du) and
µy (du)P(u, dv) are equivalent so that the density in the
construction of α exists.

I Efficiency of the method depends on the average acceptance
probabilities obtained. This can be controlled by the choice of the
proposal distribution P(u, dv).

I If the proposal distribution is symmetric, then

α(u, v) = min
(

1,
µy (dv)P(v , du)

µy (du)P(u, dv)
(u, v)

)
= min

(
1, exp

(
Φ(v ; y)− Φ(u; y)

))

I Good proposals can be constructed by taking one step of a
discretised Langevin equation.



3. Conclusions



Conclusions

I Many applied problems can be written as sampling problems on a
function space.

I In some situations an infinite dimensional method may provide more
regularity and thus may be easier to use.

I There are various methods available to solve the resulting sampling
problems.
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