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Motivation



There are many problems in applied statistics where it is beneficial to use
probabilistic methods for angles. This is part of directional statistics.

I distribution of a single angle = distribution on a circle

I joint distribution of several angles = distribution on a torus Td

Application areas include

I astronomy

I geology

I biochemisty

In this talk I’ll briefly consider some examples from biochemisty, and in
particular distributions of angles describing the conformation of proteins
or RNA molecules.



Example: backbone angles of proteins
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I Most of the geometric structure of the protein backbone is described
by the sequence of dihedral angles ϕ1, ψ1, ϕ2, ψ2, . . .

I By creating a scatter-plot of (ϕ,ψ) (Ramachandran plot) for
naturally occuring proteins, one can see that (ϕ,ψ) have a
non-trivial joint distribution on the torus T2.

I This forms the basis for probabilistic models of protein structure.
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Angular Distributions



Commonly used distributions of one angle include:

I uniform: θ ∼ U [0, 2π]

I von Mises distribution: density ϕ(θ) = 1
Z(κ) exp

(
κ cos(θ − µ)

)
I Bingham distribution

I wrapped normal distribution:
θ = X mod 2π where X ∼ N (µ, σ2)

I wrapped Cauchy distribution:
θ = X mod 2π where X is Cauchy distributed on R

Differences to probability distributions on R:

I The usual definitions of “expectation”, “variance” etc. fail.
(What is the mean of a uniform distributions on angles?)

I There are no “tails”.



Commonly used distributions of several angles include:

I the “full” bivariate von Mises distribution

I the multi-variate von Mises distribution (see next slide)

I wrapped multivariate normal distribution N (µ,Σ)

Such distributions can be used as building blocks to model distributions
like in the Ramachandran plot (e.g. as a mixture of several von Mises
distributions).

Remark. These are distributions on the torus. Distributions on the
sphere are different!



The Sine Model



The multivariate von Mises distribution on the d-dimensional torus Td

has density

ϕ(θ;µ, κ,Λ) =
1

Z (κ,Λ)
exp
(
κ>c(θ) +

1

2
s(θ)>Λ s(θ)

)
where

I ci (θ) = cos(θi − µi ) and si (θ) = sin(θi − µi ) for i = 1, . . . , d ,

I µ ∈ Td is the location parameter,

I κ ∈ Rd
+ determines “concentration”,

I Λ = (λij) ∈ Rd×d with Λ>= Λ and λii = 0 for i = 1, . . . , d , and

I Z (κ,Λ) is the normalisation constant.

Remark. For d = 1 one has Z (κ,Λ) = 2πI0(κ) where I0 is the modified
Bessel function of order 0. For d > 1 there is no closed-form expression
for the normalising constant Z .



Example. The motion of a compass needle in a mag-
netic field under the influence of white noise is described
by the following stochastic differential equation:

dθ(t) = −α sin
(
θ(t)

)
dt + σ dB(t)

where

I B: a Brownian motion

I α > 0: strength of the magnetic field

I σ > 0: strength of noise

θ

N

S

It is easy to check that the equilibrium distribution of θ(t) is a
one-dimensional von Mises distribution with κ = 2α/σ2 and µ = 0.



Normal Approximation. By Taylor-approximation we have
cos(θ) ≈ 1− 1

2θ
2 and sin(θ) ≈ θ. Thus

κ>c(θ) +
1

2
s(θ)>Λ s(θ) ≈

d∑
i=1

κi (1− 1

2
θ2
i ) +

1

2

d∑
i ,j=1

θiλijθj

= −1

2
θ>Σ−1θ + const.

where
Σ−1 = diag(κ)− Λ.

Result: For “big” κ, the multivariate von Mises distribution “converges”
to the wrapped N (µ,Σ) distribution.

Lemma. Assume that the matrix Σ−1 is positive definite. Then the
global maximum of the von Mises density ϕ is attained at θ = µ and
ϕ has no other (local) maxima.
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Small/vanishing concentration. If κ is “small”, the von Mises
distribution can have a surprising number of modes. Example: for

κ =

1
1
1

 , Λ =

 0 −5 5
−5 0 5

5 5 0


the distribution has 6 isolated modes. These cases will not be useful for
modelling!

In the extreme case κ = 0 the density of the von Mises distribution
simplifies to

ϕ(θ;µ, 0,Λ) =
1

Z (0,Λ)
exp
(1

2
s>Λ s

)
=: g(s)

where s =
(
sin(θ1), . . . , sin(θd)

)
∈ [−1, 1]d . It transpires that at the

maxima of the density, s is located in the corners of the cube [−1, 1]d .
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Outlook

For “large” κ the multivariate von Mises distribution can be used as a
building block for modelling distributions on the torus. Further questions
include:

I How to sample from a multivariate von Mises distribution?

I How to perform statistical inference, e.g. fitting of parameters?

References

I Kanti V. Mardia and Peter E. Jupp, Directional statistics.
Wiley Series in Probability and Statistics, 2000

I Wouter Boomsma, Kanti V. Mardia, Charles C. Taylor, Jesper Ferkinghoff-Borg, Anders
Krogh, Thomas Hamelryck, A generative, probabilistic model of local protein structure.
PNAS, vol. 105 (26), pp. 1-6, 2008

I Kanti V. Mardia, Gareth Hughes, Charles C. Taylor, Harshinder Singh, A multivariate
von Mises distribution with applications to bioinformatics.
The Canadian Journal of Statistics, vol. 36 (1), pp. 99-109, 2008


	Outline
	Motivation
	Angular Distributions
	The Sine Model
	Outlook

