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Sampling on Path Space



The solution of an SDE, e.g. of the form

dXt = b(Xt) dx + a(Xt) dWt ∀t ∈ [0,T ],

defines a probability distribution µ on the space C
(
[0,T ],Rd

)
.

Idea. Use a MCMC method, i.e. find a stochastic process x with values
in C

(
[0,T ],Rd

)
whose stationary distribution coincides with the target

distribution µ. Assuming ergodicity, we can probe all statistical properties
of µ using ergodic averages:∫

C
(
[0,T ],Rd

) f (x) dµ(x) = lim
S→∞

1

S

∫ S

0
f (xτ ) dτ .

This point of view is particularly useful, if there are additional contraints
on the solution X which destroy the basic Markovian structure of the
process. Example: sampling bridges with X (0) = a and X (T ) = b.



basic example: sampling Brownian bridges

The stochastic heat equation

∂τx(τ, t) = ∂2t x(τ, t) +
√

2 ∂τw(τ, t)

with Dirichlet boundary conditions

x(τ, 0) = 0, x(τ,T ) = 0

has the distribution of a Brownian bridge on [0,T ] as its
stationary distribution.

I ∂τw is space-time white noise

I t ∈ [0,T ] is physical time (“space” of the SPDE,
time of the Brownian bridge)

I τ ∈ [0,∞) is algorithmic time
(time of the SPDE)



One can obtain results like the following:

theorem 1. Let X be the solution of

dXt = f (Xt) dt + dWt , X (0) = 0, X (T ) = 0.

Then the stationary distribution of

∂τx(τ, t) = ∂2t x(τ, t)−
(
ff ′ +

1

2
f ′′
)
(x) +

√
2 ∂τw(τ, t)

with Dirichlet boundary conditions

x(τ, 0) = 0, x(τ,T ) = 0

coincides with the distribution of X on C
(
[0, 1],R

)
.

The result needs (among other assumptions) that f is a gradient.



Main Result



We consider hypoelliptic diffusions of the form

mẌt = F (Xt)− Ẋt +
√

2/β Ẇt

where Xt ∈ Rd for t ∈ [0,T ], F : Rd → Rd , β > 0 and Ẇ is white noise.
This could, for example, describe a physical system with friction and
noise.

Example. We can consider the
case F = −V ′ where V is a
double-well potential:

V (x) = (x−1)2(x+1)2 ∀x ∈ R.

Depending on the amount of
noise, the system exhibits meta-
stable behaviour.
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mẌt = F (Xt)− Ẋt +
√

2/β Ẇt X0 = 0
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Sometimes we want to simulate the dynamics of the system conditioned
on certain events.

Examples.

I We can study the transitions between meta-stable states by
simulating paths conditioned on a transition happening.

I In signal processing we want to find the conditional distribution of
the system given (noisy) observations.

Problem. How can we sample from the distribution µ of

m Ẍt = F
(
Xt

)
− Ẋt +

√
2/β Ẇt ,

conditioned on X0 = x− and XT = x+?



mẌt = F (Xt)− Ẋt +
√

2/β Ẇt X0 = −1, X1000 = +1
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Main Result

theorem 2. Let x : Ω× R+ → C
(
[0,T ],Rd

)
be the solution of

∂τx(τ, t) = L
(
x(τ, t)− x̄(t)

)
+N

(
x
)

+
√

2 ∂τw(τ, t)

where L = −β
2

(
m2∂4t − ∂2t

)
with certain boundary conditions,

Nk (x) = −β
2

Fi (x)∂k Fi (x) +
mβ

2
∂txi∂txj∂

2
ij Fk (x)

− β

2
∂txj

(
∂j Fk (x)− ∂k Fj (x)

)
+

mβ

2
∂2t xj

(
∂j Fk (x) + ∂k Fj (x)

)
+

mβ

2

(
Fk (x−)∂tδ0 − Fk (x+)∂tδT

)
and w is a cylindrical Wiener process. Then, in stationarity, the
distribution of t 7→ x(τ, t) coincides with the target distribution µ.



Remarks about the Proof



As usual, we can rewrite the second order SDE as a system of first order
SDEs. Let qt = Xt and pt = mẊt , then

dqt =
1

m
pt dt, q0 = x−

dpt = − 1

m
pt dt + F (q) dt +

√
2/β dWt , p0 ∼ N (0,

m

β
).

remark. q is a deterministic function of p. Using this function we can
solve the second equation to get p. Finally we can compute q from p.



The linear case (F = 0)

For F = 0, the hypoelliptic SDE simplifies to

mẌt = −Ẋt +
√

2/β Ẇt .

Since this equation is linear, X is a Gaussian process and its distribution
is completely characterised by the mean x̄ and the covariance operator C.

lemma. Let L be a linear, negative, self-adjoint operator on
L2
(
[0,T ],Rd

)
such that C = −L−1 is trace class and let

x̄ ∈ L2
(
[0,T ],Rd

)
. Then

∂τx(τ, t) = L(x − x̄) dτ +
√

2∂τw(τ, t)

has stationary distribution N (x̄ , C).

In our situation we get L = −β
2

(
m2∂4t − ∂2t

)
(with certain boundary

conditions).



The non-linear case (F 6= 0)

lemma (on Rn). Let µ, ν be probability distributions. Assume that ν is
the stationary distribution of

dz(τ) = Lz(τ) dτ +
√

2 dw(τ).

and that dµ
dν = ϕ. Then

dx(τ) = Lx(τ) dτ +∇ logϕ(x(τ)) +
√

2 dw(τ)

has stationary distribution µ.

The result can be carried over to infinite dimensional situations by finite
dimensional approximation.

note. Since the equation for z is linear, we know ν = N (0,−L−1).



In our case:

I ν is the target distribution with F = 0,

I µ is the target distribution with F 6= 0.

Girsanov’s formula gives

ϕ(q) = exp
(√β

2

∫ T

0
〈F (q(t)), dW (t)〉 − β

4

∫ T

0
|F (q(t))|2 dt

)
.

The (variational) derivative of ϕ is given by

D logϕ(q)h =
mβ

2

(
Fk (q+)h′k (T )− Fk (q−)h′k (0)

)
− β

2

∫ T

0

(
Fi∂k Fi −mq̇i q̇j∂

2
ij Fk

+ q̇j (∂j Fk − ∂k Fj )−mq̈j (∂j Fk + ∂k Fj )
)

hk (t) dt

= 〈N (q), h〉.



Remarks.

I Existence of local solution follows from the fact that the
non-linearity N is a Lipschitz function from H3/2+ε to H−3/2−ε (for
good enough F ). One can get the required a-priori bounds to prove
the existence of global solutions. The most “dangerous” term in the
non-linearity is

∂2t xj

(
∂j Fk (x) + ∂k Fj (x)

)
.

I Differently from the earlier result (for first order SDEs), we do not
require the drift F to be a gradient.



Conclusion

I The method provides a generic framework to derive sampling
equations, many applications are possible (e.g. nonlinear filtering).

I Different from the first-order SDE case, we do not require a gradient
structure.

I Interesting problems in the theory of the method, implementation,
and applications.
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