Sampling Conditioned Hypoelliptic Diffusions

Jochen Voss

University of Leeds

16th August 2010

Joint work with Martin Hairer and Andrew Stuart

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

Sampling on Path Space

Main Result

Remarks about the Proof

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Sampling on Path Space

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The solution of an SDE, e.g. of the form

 $dX_t = b(X_t) \, dx + a(X_t) \, dW_t \qquad \forall t \in [0, T],$

defines a probability distribution μ on the space $C([0, T], \mathbb{R}^d)$.

Idea. Use a MCMC method, *i.e.* find a stochastic process x with values in $C([0, T], \mathbb{R}^d)$ whose stationary distribution coincides with the target distribution μ . Assuming ergodicity, we can probe all statistical properties of μ using ergodic averages:

$$\int_{C([0,T],\mathbb{R}^d)} f(x) d\mu(x) = \lim_{S\to\infty} \frac{1}{S} \int_0^S f(x_\tau) d\tau.$$

This point of view is particularly useful, if there are additional contraints on the solution X which destroy the basic Markovian structure of the process. Example: sampling bridges with X(0) = a and X(T) = b. basic example: sampling Brownian bridges

The stochastic heat equation

 $\partial_{\tau} x(\tau,t) = \partial_t^2 x(\tau,t) + \sqrt{2} \, \partial_{\tau} w(\tau,t)$

with Dirichlet boundary conditions

$$x(\tau,0)=0, \qquad x(\tau,T)=0$$

has the distribution of a Brownian bridge on [0, T] as its stationary distribution.

- $\partial_{\tau} w$ is space-time white noise
- ► t ∈ [0, T] is physical time ("space" of the SPDE, time of the Brownian bridge)
- τ ∈ [0,∞) is algorithmic time
 (time of the SPDE)

イロト イポト イラト イラト

One can obtain results like the following:

theorem 1. Let X be the solution of

 $dX_t = f(X_t) dt + dW_t, \qquad X(0) = 0, \ X(T) = 0.$

Then the stationary distribution of

$$\partial_ au x(au,t) = \partial_t^2 x(au,t) - ig(ff'+rac{1}{2}f''ig)(x) + \sqrt{2}\,\partial_ au\,w(au,t)$$

with Dirichlet boundary conditions

 $x(\tau, 0) = 0, \qquad x(\tau, T) = 0$

coincides with the distribution of X on $C([0,1],\mathbb{R})$.

The result needs (among other assumptions) that f is a gradient.

Main Result

We consider hypoelliptic diffusions of the form

$$m\ddot{X}_t = F(X_t) - \dot{X}_t + \sqrt{2/\beta} \, \dot{W}_t$$

where $X_t \in \mathbb{R}^d$ for $t \in [0, T]$, $F : \mathbb{R}^d \to \mathbb{R}^d$, $\beta > 0$ and \dot{W} is white noise. This could, for example, describe a physical system with friction and noise.

Example. We can consider the case F = -V' where V is a double-well potential:

$$V(x)=(x{-}1)^2(x{+}1)^2 \quad orall x\in \mathbb{R}.$$

Depending on the amount of noise, the system exhibits metastable behaviour.

$$m\ddot{X}_t = F(X_t) - \dot{X}_t + \sqrt{2/\beta} \, \dot{W}_t \qquad X_0 = 0$$

Sometimes we want to simulate the dynamics of the system conditioned on certain events.

Examples.

- We can study the transitions between meta-stable states by simulating paths conditioned on a transition happening.
- In signal processing we want to find the conditional distribution of the system given (noisy) observations.

Problem. How can we sample from the distribution μ of

$$m\ddot{X}_t = F(X_t) - \dot{X}_t + \sqrt{2/\beta}\,\dot{W}_t,$$

conditioned on $X_0 = x_-$ and $X_T = x_+$?

$$m\ddot{X}_t = F(X_t) - \dot{X}_t + \sqrt{2/\beta} \, \dot{W}_t \qquad X_0 = -1, \quad X_{1000} = +1$$

Main Result

theorem 2. Let $x: \Omega \times \mathbb{R}_+ \to C([0, T], \mathbb{R}^d)$ be the solution of

 $\partial_{\tau} x(\tau, t) = \mathcal{L}(x(\tau, t) - \bar{x}(t)) + \mathcal{N}(x) + \sqrt{2} \partial_{\tau} w(\tau, t)$

where $\mathcal{L}=-rac{eta}{2}ig(m^2\partial_t^4-\partial_t^2ig)$ with certain boundary conditions,

$$egin{aligned} \mathcal{N}_k(x) &= -rac{eta}{2} \mathcal{F}_i(x) \partial_k \mathcal{F}_i(x) + rac{meta}{2} \partial_t x_i \partial_t x_j \partial_{ij}^2 \mathcal{F}_k(x) \ &- rac{eta}{2} \partial_t x_j ig(\partial_j \mathcal{F}_k(x) - \partial_k \mathcal{F}_j(x)ig) \ &+ rac{meta}{2} \partial_t^2 x_j ig(\partial_j \mathcal{F}_k(x) + \partial_k \mathcal{F}_j(x)ig) \ &+ rac{meta}{2} ig(\mathcal{F}_k(x_-) \partial_t \delta_0 - \mathcal{F}_k(x_+) \partial_t \delta_Tig) \end{aligned}$$

and w is a cylindrical Wiener process. Then, in stationarity, the distribution of $t \mapsto x(\tau, t)$ coincides with the target distribution μ .

Remarks about the Proof

As usual, we can rewrite the second order SDE as a system of first order SDEs. Let $q_t = X_t$ and $p_t = m\dot{X}_t$, then

$$dq_t = \frac{1}{m} p_t dt, \qquad q_0 = x_-$$

$$dp_t = -\frac{1}{m} p_t dt + F(q) dt + \sqrt{2/\beta} dW_t, \quad p_0 \sim \mathcal{N}(0, \frac{m}{\beta}).$$

remark. q is a deterministic function of p. Using this function we can solve the second equation to get p. Finally we can compute q from p.

The linear case (F = 0)

For F = 0, the hypoelliptic SDE simplifies to

 $m\ddot{X}_t = -\dot{X}_t + \sqrt{2/\beta}\,\dot{W}_t.$

Since this equation is linear, X is a Gaussian process and its distribution is completely characterised by the mean \bar{x} and the covariance operator C.

lemma. Let \mathcal{L} be a linear, negative, self-adjoint operator on $L^2([0, T], \mathbb{R}^d)$ such that $\mathcal{C} = -\mathcal{L}^{-1}$ is trace class and let $\bar{x} \in L^2([0, T], \mathbb{R}^d)$. Then

$$\partial_{\tau} x(\tau,t) = \mathcal{L}(x-\bar{x}) \, d\tau + \sqrt{2} \partial_{\tau} w(\tau,t)$$

has stationary distribution $\mathcal{N}(\bar{x}, \mathcal{C})$.

In our situation we get $\mathcal{L} = -\frac{\beta}{2} (m^2 \partial_t^4 - \partial_t^2)$ (with certain boundary conditions).

The non-linear case ($F \neq 0$)

lemma (on \mathbb{R}^n **).** Let μ, ν be probability distributions. Assume that ν is the stationary distribution of

 $dz(\tau) = Lz(\tau) d\tau \qquad \qquad + \sqrt{2} dw(\tau).$

and that $\frac{d\mu}{d\nu} = \varphi$. Then

 $dx(\tau) = Lx(\tau) \, d\tau + \nabla \log \varphi(x(\tau)) + \sqrt{2} \, dw(\tau)$

has stationary distribution μ .

The result can be carried over to infinite dimensional situations by finite dimensional approximation.

note. Since the equation for z is linear, we know $\nu = \mathcal{N}(0, -L^{-1})$.

In our case:

- ν is the target distribution with F = 0,
- μ is the target distribution with $F \neq 0$.

Girsanov's formula gives

$$arphi(q) = \exp\Big(\sqrt{rac{eta}{2}}\int_0^T \langle F(q(t)), dW(t)
angle - rac{eta}{4}\int_0^T |F(q(t))|^2 dt\Big).$$

The (variational) derivative of φ is given by

$$D \log \varphi(q)h = \frac{m\beta}{2} \left(F_k(q_+)h'_k(T) - F_k(q_-)h'_k(0) \right) - \frac{\beta}{2} \int_0^T \left(F_i \partial_k F_i - m\dot{q}_i \dot{q}_j \partial_{ij}^2 F_k + \dot{q}_j (\partial_j F_k - \partial_k F_j) - m\ddot{q}_j (\partial_j F_k + \partial_k F_j) \right) h_k(t) dt = \langle \mathcal{N}(q), h \rangle.$$

Remarks.

• Existence of local solution follows from the fact that the non-linearity \mathcal{N} is a Lipschitz function from $H^{3/2+\epsilon}$ to $H^{-3/2-\epsilon}$ (for good enough F). One can get the required a-priori bounds to prove the existence of global solutions. The most "dangerous" term in the non-linearity is

$$\partial_t^2 x_j (\partial_j F_k(x) + \partial_k F_j(x)).$$

Differently from the earlier result (for first order SDEs), we do not require the drift F to be a gradient.

Conclusion

- The method provides a generic framework to derive sampling equations, many applications are possible (*e.g.* nonlinear filtering).
- Different from the first-order SDE case, we do not require a gradient structure.
- Interesting problems in the theory of the method, implementation, and applications.

References

- M. Hairer, A.M. Stuart and J. Voss, Sampling Conditioned Diffusions. Pages 159–186 in Trends in Stochastic Analysis, Cambridge University Press, vol. 353 of London Mathematical Society Lecture Note Series, 2009.
- M. Hairer, A.M. Stuart and J. Voss, Sampling Conditioned Hypoelliptic Diffusions. To appear in the Annals of Applied Probability, 2010.