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This talk is based on the following article:

The Effect of Finite Element Discretisation on the
Stationary Distribution of SPDEs.

Communications in Mathematical Sciences, vol. 10, no. 4,
pp. 1143-1159, 2012.



MCMC Methods using SPDEs



j example 1. The stochastic heat equation
dru(t,x) = 2u(t,x) + V20 w(t, x)
with Dirichlet boundary conditions

u(t,0)=0, u(t,1)=0 Vt>0

has the distribution of a Brownian bridge on [0, 1] as its
stationary distribution.

» O;w is space-time white noise

n”l Im

> t € [0,00) is “time” of the SPDE vyt

» x €[0,1] (“space” of the SPDE) is “time” of the H—
Brownian bridge.




example 2. Consider the stochastic partial differential equation (SPDE)

Oeu(t,x) = D2u(t,x) — (gg’ + %g")(u(t,x)) + V20, w(t, x)

with Dirichlet boundary conditions

u(t,0)=0, wu(t,1)=0 vt > 0.

> The stationary distribution of this SPDE on C([0, 1], R) coincides
with the conditional distribution of the process X given by
dX: = g(X;) dt + dW; v e [0,1]
Xo = 0.
conditioned on X; = 0.
» We can study X by studying x — u(t, x) for large times t.



In general, we aim to construct SPDEs such that
I stationarity, the paths x — u(t, x) have the distribution of some
“interesting” process X, e.g. of a conditioned diffusion

> u is ergodic: for suitable test functions ¢ we have

T

E(¢(X)) = 7]11100% | o(u(t, -)) dt

If we can solve the SPDE on a computer, this leads to Markov Chain
Monte Carlo (MCMC) methods: the process u generates samples of X
which we can use to study the distribution of X.



We consider SPDEs of the form
Oeu(t,x) = O2u(t,x) + f(u(t, x)) + V2 ew(t, x)

where

(t,x) € [0,00) x [0, 1],

Orw is space-time white noise,

the drift f: R — R is a smooth function,

v

v

v

v

the differential operator £ = 92 is equipped with boundary
conditions such that it is a negative operator on the space
L2([0, 1], R).



Lemma. For f =0, let v be the stationary distribution of the linear
SPDE
deu(t, x) = O2u(t, x) + V2 8 w(t, x).

Then v coincides with the distribution of the process U given by
Ux)=B(x)+(1—x)L+xR  V¥xe]0,1]

where
» B is a Brownian bridge, independent of L and R,
» L~ N(0,02), R ~N(0,0%) with Cov(L, R) = oyg,
» 02, 0%, oLR are determined by the boundary conditions of L.



Lemma. For f = F’ where F: R — R is bounded from above, let y be
the stationary distribution of the SPDE

Oeu(t,x) = O2u(t,x) + f(u(t, x)) + V2 9:w(t, x).

Then p satisfies

Z'Z( )= ;exp</01 F(u(x)) dx)

where v is the stationary distribution of the linear SPDE.

On RY we know that the SDE
dX; = Vlog (X) dt + V2 dW,

has invariant density ¢. The above lemma is an infinite dimensional
analogue of this result.



i Finite Element Discretisation



In this talk we only consider space discretisation of our SPDE.
» let Ax=1/n, neN
» consider x-values on the grid {0, Ax,...,(n—1)Ax,1}

» we use “hat functions” ¢; for i = 0,1,..., n which have
wi(i Ax) =1, p;i(j Ax) = 0 for all j # i, and which are affine
between the grid points

Formally, expressing the solution in the basis ¢; as

u(tx) = 3 U(e)ei()

(o3 S0) = (01 02 Y Usep) + (o F(X o)) + V2L, CZTV:>
j ' j

J

where (-, -) denotes the L2-inner product. We will see that this is a
system of n+ 1 SDEs.



dU; d
(o > S = (0 823 Uey) + o F(3 Uiey) + V2 ler )
j J

J

can be written as

d dW
I\/Id—Lt/ = LU + () + VM s

where

» the matrix LFP is defined by LFE (pi, 020},
» the matrix M is defined by /\/IU = (pi, ¢j)

n
> FE(u); = (pi, f(z ujp;)) forall u e R™L i =0,...,n.
j=0

> Cov((go,-, W), <g0j, Wt>) = (¢i, 991'>t-



By multiplication with M~1 we get the finite element discretisation:

du

E — M—ILFEU+ M_lfFE(U) + \/EM_I/Z %

dt

where
» W is an (n + 1)-dimensional standard Brownian motion
] —1-%Ax 1

> LFE — L 161 ) 1 c R(n+1)x(n+1)

Ax 1 —1-%Ax

1
2/6 1/6
» M=Ax|1/6 4/6 1/6| e R(m+1)x(n+1)
1/6 2/6



Lemma. Let L € R9%9 be symmetric, negative definite and G be
symmetric, positive definite. Then the SDEs

dU dw
and dU dw
ey _ 1 G
& = GLU+GF(U)+ G/ —

have the same stationary distribution.

Using the lemma with G = M~ shows that

du

dw
- U+ FFEU) +v2 ”

has the same stationary distribution as the finite element discretisation.



Again, we first consider the case f = 0.

Lemma. Let L € RY%? be a matrix such that the real part of all
eigenvalues is strictly negative. Then the unique stationary distribution of

dU dW
pr L A

is (0, C), where the covariance matrix C solves the Lyapunov equation

LC+CL" = —-BB'.

Thus, for f = 0, the stationary distribution is v, = N'(0, C¥F) where
CFE is the unique solution of [FECFE 4 CFEIFE — 9] je.
CFE — (_LFE)—I_



The stationary distribution p, for the discretised SPDE with f # 0 can
be found using the following lemma:

Lemma. Let f: R — R be a vector field with f = VF for some
F: Rl — R. Then the SDE

dU = LU dt + f(U) dt + 2 dW

has stationary distribution p, with

P (u) = - exp(F(0)

where v, is the stationary distribution of the linear equation and Z, is a
normalisation constant.

Once we show that ¥ can be written as a gradient, the lemma allows
to find .



Discretisation Error



We have seen how to find

> the stationary distribution  of the SPDE on C([0, 1], R)

» the stationary distribution 1, of the discretised SPDE on R"*!
We want to show p, — u as n — oo.

questions. What metric to use? On which space?
Here we project everything to R"t1: We define
N,: C([0,1],R) — R"*!

by
MNpu = (u(0Ax), u(1Ax),. .., u(nAx)).



Main result:

Theorem. For f # 0, let i be the stationary distribution of the SPDE
and let u, be the stationary distribution of the finite element
discretisation. Assume f = F’ where F € C?(R) is bounded from above
with bounded second derivatives. Then we have

1
ln = po My = O(;) = oY

where || -||Tv denotes total-variation distance.

If 4+ and v both have densities w.r.t. a common reference measure A,
J then the total variation distance can be computed as follows:

du dv
In=virv = [155 = 5lax



Ideas of the Proof



Again, we start with the linear equation.

Lemma. For f = 0, let v be the stationary distribution of the linear
SPDE
dru(t,x) = 2u(t,x) + V2 dw(t, x).

and let v, be the stationary distribution of the (linear) finite element
discretisation with f = 0 on R™L. Then we have

vp=vol !

for every n € N.

This shows that for the linear equation there is no discretisation error at

A



We want to compare
> the stationary distribution  of the SPDE on C([0, 1], R)

» the stationary distribution y, of the discretised SPDE on R"*!

Steps of the proof:
1. find a common space for both measures
rewrite the total variation distance using the densities

dpn 1 exp(/o1 F(Un(x)) dx)

du 1 !
—_— = = F -

v~z ( /O (U(x) dX) dve  Z,
where U is distributed according to the stationary distribution v and

2.

Un = 310 UGAX)g;(t).
3. deal with the normalisation constants

4. compare the two exponentials



Using the above steps, the theorem can be reduced to the question how
fast ||U — Upl|oo converges to 0.

The difference U — U, is a chain of independent Brownian bridges, the
i resulting questions are easy to answer.



Conclusion



We have seen that
1
ot = gy = 0(5) a0 oo

One can show that this bound is sharp.

Instead of projecting 1 onto R"*1 one can embed R"*! in

C([O7 1],]R) by interpolating the discretisation with Brownian
bridges. Nearly no changes are required in the proof and the result is
the same.

One would expect for a similar result to hold for SPDEs with values
in R9 instead of in R (but notation will be more challenging).
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