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Data Assimilation using 4D-VAR



We consider the following “caricature” of a forecasting problem:

true state x0 true state xT

background x (b) forecast x (f )
model, observations

timet = 0 (now) t = T (future)

I We want to forecast the unknown state xT of a system for a future
time T , starting from the current state x0.

I The current state x0 is unknown, our “best guess” is x (b).

I For times 0 ≤ t1 ≤ t2 ≤ · · · ≤ tJ ≤ T we have noisy observations
yj ≈ H(xtj ).



For a Bayesian approach we make the following assumptions:

I x (b) − x0 ∼ N (0,C ), i.e. x0 ∈ Rd has density

p(x0) =
1

(2π)d/2|C |1/2
exp
(
−1

2
(x0 − x (b))>C−1(x0 − x (b))

)
.

I The observations are independent and satisfy yj ∼ N
(
H(xtj ),R

)
, i.e.

yj ∈ Rm has density

p(yj |x0) =
1

(2π)m/2|R|1/2
exp
(
−1

2
(yj − H(xtj ))>R−1(yj − H(xtj ))

)
,

where xtj = Mtj (x0) is the system state at time tj , for j = 1, . . . , J.

From these assumptions we can find the posterior density of x0 as

p(x0 |y) =
p(y |x0)p(x0)

p(yj)
∝

J∏
j=1

p(yj |x0)p(x0) = · · · .



For high-dimensional models, the full posterior density for x0 can be
difficult to work with and often it is convenient to use a point estimate
for x0 instead. Here we use the maximum a posteriori (MAP)
estimator x̂0, defined as

x̂0 = arg max
x0

p(x0 |y).

This estimator attempts to obtain a “typical” value from the posterior
distribution. The MAP estimator works well if the posterior is unimodal
and highly concentrated.



For the forecasting problem, the MAP estimator is the x0 ∈ Rd which
maximises

p(x0 |y) ∝
J∏

j=1

p(yj |x0)p(x0)

∝ exp
(
−1

2

J∑
j=1

(yj − H(xtj ))>R−1(yj − H(xtj ))

− 1

2
(x0 − x (b))>C−1(x0 − x (b))

)
=: exp

(
−I (x0)

)
or, equivalently, minimises the “cost function” I . The data assimilation
method based on this procedure is called 4D-VAR.



Summary: the 4D-VAR method minimises

I (x) = Φ(x) +
1

2
‖x − x (b)‖2E

where
‖x‖2E = x>C−1x

and

Φ(x) =
1

2

J∑
j=1

(yj − H(xtj ))>R−1(yj − H(xtj ))

where H is the observation map and xtj = Mtj (x) is obtained by
integrating the model, starting with state x at time 0, until time tj .

By shifting coordinates, we can assume x (b) = 0 without loss of
generality.



Infinite Dimensional MAP Estimators



In many applications of MAP estimators, including applications in
weather forecasting, the system state x is an infinite-dimensional object.
Thus, it is natural to ask whether MAP estimators (and the 4D-VAR
method) still work in infinite-dimensional spaces:

I If a numerical method does not make sense for the limiting, infinite
dimensional object, the method may be ill-behaved for
high-dimensional systems.

I Separating issues of discretisation from issues of the estimation
method can lead to greater clarity.

I General rule: discretise as late as possible.



We assume that the posterior µ is a probability measure on an infinite
dimensional, separable Banach space (X , ‖ · ‖X ).

Problem. The MAP estimator is defined in terms of densities w.r.t.
Lebesgue measure, but Lebesgue measure does not exist on infinite
dimensional spaces.

Solution 1. We can consider reference measures µ0 other than Lebesgue
measure. Here we assume that µ0 is a Gaussian measure on X and that
µ has density

dµ

dµ0
(x) ∝ exp

(
−Φ(x)

)
w.r.t. µ0.



In finite dimensions:

dµ

dLeb
(x) =

dµ

dµ0
(x) · dµ0

dLeb
(x)

∝ exp
(
−Φ(x)

)
· exp

(
−1

2
x>C−1x

)
= exp

(
−Φ(x)− 1

2
‖x‖2E

)
for all x ∈ Rd .
Infinite dimensional analogue of the right-hand side:

“
dµ

dLeb
(x)” ∝ exp

(
−Φ(x)− 1

2
‖x‖2E

)
for all x ∈ E ⊂ X where (E , ‖ · ‖E ) is the Cameron-Martin space of the
Gaussian measure µ0. Even if the left-hand side does not make sense any
more, we can still try to maximise the right-hand side over E .



Example. If µ is the distribution of the solution of the stochastic
differential equation (SDE) dxt = f (xt) dt + dwt on X = L2([0,T ],R),
then we can choose µ0 to be Wiener measure (i.e. the distribution of a
Brownian motion). By the Girsanov formula from stochastic analysis, µ
has density exp

(
−Φ(x)

)
w.r.t. µ0, where

Φ(x) =
1

2

∫ T

0

∣∣f (xt)
∣∣2 dt − ∫ T

0
f (xt) dxt ,

and the Cameron-Martin space of µ0 is

E =
{
x ∈ H1([0,T ],R)

∣∣∣ x0 = 0,

∫ T

0
ẋ2t dt <∞

}
,

with norm

‖x‖2E =

∫ T

0
ẋ2t dt

for all x ∈ E . The “MAP estimator” minimises Φ(x) + 1
2‖x‖

2
E .



Solution 2. Without using densities we can consider small ball
probabilities µ

(
B(x , ε)

)
and then let ε ↓ 0.

Definition. x̂ ∈ X is a MAP estimator for µ, if

lim
ε↓0

µ
(
B(x̂ , ε)

)
supx∈X µ

(
B(x , ε)

) = 1.

Our main result show that x̂ ∈ X is a MAP estimator for µ, if and only if
x̂ is a minimiser of the Onsager-Machlup functional

I (x) =

{
Φ(x) + 1

2‖x‖
2
E , if x ∈ E , and

+∞ otherwise.

In particular this implies that MAP estimators always lie in the
Cameron-Martin space E .



Assumptions. The function Φ: X → R satisfies the following conditions:

A1 Φ is bounded from below, i.e. there is an M ∈ R, such that for all
x ∈ X we have

Φ(x) ≥ M.

A2 Φ is locally bounded from above, i.e. for every r > 0 there exists
K = K (r) > 0 such that for all x ∈ X with ‖x‖X < r we have

Φ(x) ≤ K .

A3 Φ is locally Lipschitz continuous, i.e. for every r > 0 there exists
L = L(r) > 0 such that for all x1, x2 ∈ X with ‖x1‖X , ‖x2‖X < r we
have

|Φ(x1)− Φ(x2)| ≤ L‖x1 − x2‖X .



Theorem. Assume A1, A2 and A3. Then the following statements hold:

i) Any MAP estimator x̂ ∈ X minimises the Onsager-Machlup
functional I . In particular, x̂ satisfies x̂ ∈ E .

ii) Any x̂ ∈ E which minimises the Onsager-Machlup functional I is a
MAP estimator.



The proof of the result is long and technical, but it is based on the
following property of the Onsager-Machlup functional: If x1, x2 ∈ E , then

lim
ε↓0

µ(B(x2, ε))

µ(B(x1, ε))
= exp

(
I (x1)− I (x2)

)
.

The technical difficulties are caused, among other things, by the following
facts:

I A copy of the measure µ shifted by x ∈ X is absolutely continuous
w.r.t. µ, if and only if x ∈ E . Thus working with the probabilities
µ(B(x , ε)) works best if x ∈ E .

I E ⊆ X is dense, but µ(E ) = 0.



Consistency



We have seen that the 4D-Var method minimises

I (x) = Φ(x) +
1

2
‖x‖2E

where

Φ(x) =
1

2

J∑
j=1

∣∣yj − Gj(x)
∣∣2
R

and
Gj(x) = H

(
Mtj (x)

)
.

The observations yj satisfy yj = G(x†) + ηj , where ηj ∼ N (0,R) are i.i.d.
and x† ∈ X is the true state.

Question. Does the 4D-VAR estimate converge to x† as J →∞?
(Answer: no, but . . . )



Large sample size limit. Let x† ∈ X and

yj = G(x†) + ηj

where ηj ∼ N (0,R) are i.i.d. for j = 1, . . . , J. Then the corresponding
Onsager-Machlup functional is

IJ(x) := ‖x‖2E +
J∑

j=1

|yj − G(x)|2R .

Theorem. Assume that G : X → RK is locally Lipschitz continuous and
x† ∈ E . For J ∈ N, let xJ ∈ E be a minimiser of IJ . Then

lim
J→∞

G(xJ) = G(x†)

almost surely.



Small noise limit. Let x† ∈ X and

yn = G(x†) +
1

n
ηn,

where ηj ∼ N (0,R) are i.i.d. for j ∈ N. Then the corresponding
Onsager-Machlup functional is

In(x) := ‖x‖2E + n2|yn − G(x)|2R .

Theorem. Assume that G : X → RK is locally Lipschitz continuous. For
n ∈ N, let xn ∈ E be a minimiser of In. Then

lim
n→∞

G(xn) = G(x†)

almost surely.



Example. Consider again the process x = (xt)t∈[0,T ] defined by the SDE

dxt = f (xt) dt + dW , x0 = a

and assume we want to make inference about the path x based on
observations

yj = xtj + ηj

where 0 ≤ t1 < t2 < · · · < tJ ≤ T and ηj ∼ N (0, γ2).

To apply our results, we choose µ0 to be the Wiener measure on
X = L2

(
[0,T ],R

)
with Cameron-Martin space

E =
{
x ∈ H1([0,T ],R)

∣∣∣ x0 = 0,

∫ T

0
ẋ2t dt <∞

}
.



The Onsager-Machlup functional is again

I (x) = Φ(x) +
1

2
‖x‖2H1 .

The function Φ incorporates both the density dµ/dµ0 (found using the
Girsanov formula) and the observations: Assuming that the drift satisfies
f = F ′, we find

Φ(x) =

∫ T

0
Ψ(xt) dt − F (xT ) +

1

2γ2

J∑
j=1

∣∣yj − xtj
∣∣2

where

Ψ(x) =
1

2

(
|f (x)|2 + f ′(x)

)
.







Conclusions



I We have shown that MAP estimators can be used in infinite
dimensional problems.

I The 4D-VAR method for data assimilation can be described in this
framework.

I The infinite dimensional approach allows for insights into the
regularity properties of the problem.
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